收稿日期: 2022-10-10
网络出版日期: 2023-01-31
基金资助
国家自然科学基金(82071171);国家自然科学基金(81870815);甘肃省重点研发计划项目(21YF5FA165);北大医学顶尖学科及学科群发展专项(BMU2022XKQ003);北京大学口腔医院新技术新疗法项目(PKUSSNCT-22A06)
Automatic determination of mandibular landmarks based on three-dimensional mandibular average model
Received date: 2022-10-10
Online published: 2023-01-31
Supported by
the National Natural Science Foundation of China(82071171);the National Natural Science Foundation of China(81870815);the Key R & D Program of Gansu Province of China(21YF5FA165);the Peking University Medicine Fund for World's Leading Discipline or Discipline Cluster Development(BMU2022XKQ003);the New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-22A06)
目的: 探索一种高效、自动确定三维下颌骨数据解剖标志点的方法,并对该方法的定点效果进行初步评价。方法: 选取40例颅颌面三维形态正常患者的CT数据(其中30例用来建立三维下颌骨平均模型,10例作为测试本研究方法确定下颌骨标志点效果的测试数据),将数据导入到Mimics软件中进行下颌骨三维重建。在这40例三维重建后的下颌骨数据中,选取与中国人下颌骨特征均值更为接近的30例,在MATLAB软件中基于普氏分析(Procrustes analysis)算法对此30例下颌骨数据进行尺寸归一化处理,并在Geomagic Wrap软件中,构建上述30例下颌骨数据的三维平均形状模型,通过对称化处理、曲率采样、索引标记等过程,构建出具有18 996个类标志点和19个下颌骨解剖标志点索引的三维下颌骨结构化模板。应用开源非刚性配准算法程序Meshmonk,将上述构建的三维下颌骨模板通过非刚性变形与患者三维下颌骨数据进行匹配,获得患者三维下颌骨数据的19个解剖标志点位置。与口腔专家手动标注的标志点位置误差(定点误差)进行比较,评价本方法的准确性。结果: 将本研究方法应用于10例无显著下颌骨形态畸形患者数据,19个标志点的平均定点误差为1.42 mm,其中最小和最大误差分别为喙突顶点[右:(1.01±0.44) mm;左:(0.56±0.14) mm]和下颌升支前缘点[右:(2.52±0.95) mm;左:(2.57±1.10) mm],中线点平均定点误差为(1.15±0.60) mm,双侧点平均定点误差为(1.51±0.67) mm。结论: 基于三维下颌骨平均模型和非刚性配准算法的三维下颌骨解剖标志点自动确定方法,可有效提高三维下颌骨数据特征自动标注的效率,其对无显著畸形下颌骨数据解剖标志点的自动确定效果可基本满足口腔临床应用的需求,对畸形下颌骨数据的标注效果有待进一步测试。
高梓翔 , 王勇 , 温奥楠 , 朱玉佳 , 秦庆钊 , 张昀 , 王晶 , 赵一姣 . 基于三维下颌骨平均模型的颌骨标志点自动确定方法[J]. 北京大学学报(医学版), 2023 , 55(1) : 174 -180 . DOI: 10.19723/j.issn.1671-167X.2023.01.027
Objective: To explore an efficient and automatic method for determining the anatomical landmarks of three-dimensional(3D) mandibular data, and to preliminarily evaluate the performance of the method. Methods: The CT data of 40 patients with normal craniofacial morphology were collected (among them, 30 cases were used to establish the 3D mandibular average model, and 10 cases were used as test datasets to validate the performance of this method in determining the mandibular landmarks), and the 3D mandibular data were reconstructed in Mimics software. Among the 40 cases of mandibular data after the 3D reconstruction, 30 cases that were more similar to the mean value of Chinese mandibular features were selected, and the size of the mandibular data of 30 cases was normalized based on the Procrustes analysis algorithm in MATLAB software. Then, in the Geomagic Wrap software, the 3D mandibular average shape model of the above 30 mandibular data was constructed. Through symmetry processing, curvature sampling, index marking and other processing procedures, a 3D mandible structured template with 18 996 semi-landmarks and 19 indexed mandibular anatomical landmarks were constructed. The open source non-rigid registration algorithm program Meshmonk was used to match the 3D mandible template constructed above with the tested patient's 3D mandible data through non-rigid deformation, and 19 anatomical landmark positions of the patient's 3D mandible data were obtained. The accuracy of the research method was evaluated by comparing the distance error of the landmarks manually marked by stomatological experts with the landmarks marked by the method of this research. Results: The method of this study was applied to the data of 10 patients with normal mandibular morphology. The average distance error of 19 landmarks was 1.42 mm, of which the minimum errors were the apex of the coracoid process [right: (1.01±0.44) mm; left: (0.56±0.14) mm] and maximum errors were the anterior edge of the lowest point of anterior ramus [right: (2.52±0.95) mm; left: (2.57±1.10) mm], the average distance error of the midline landmarks was (1.15±0.60) mm, and the average distance error of the bilateral landmarks was (1.51±0.67) mm. Conclusion: The automatic determination method of 3D mandibular anatomical landmarks based on 3D mandibular average shape model and non-rigid registration algorithm established in this study can effectively improve the efficiency of automatic labeling of 3D mandibular data features. The automatic determination of anatomical landmarks can basically meet the needs of oral clinical applications, and the labeling effect of deformed mandible data needs to be further tested.
| 1 | Kakarala K , Shnayder Y , Tsue TT , et al. Mandibular reconstruction[J]. Oral Oncol, 2018, 77, 111- 117. |
| 2 | 中华口腔医学会口腔颌面修复专业委员会. 下颌骨缺损修复重建治疗专家共识[J]. 中华口腔医学杂志, 2019, 54 (7): 433- 439. |
| 3 | Bak M , Jacobson AS , Buchbinder D , et al. Contemporary reconstruction of the mandible[J]. Oral Oncol, 2010, 46 (2): 71- 76. |
| 4 | 张鑫, 刘洋, 周建萍, 等. 点构法构建下颌骨正中矢状平面的初步探究[J]. 上海交通大学学报(医学版), 2019, 39 (1): 52- 59. |
| 5 | 周子疌, 朱向阳, 韩婧, 等. 基于机器学习的颌骨特征点还原法辅助跨中线颌骨缺损重建[J]. 中国口腔颌面外科杂志, 2020, 18 (4): 323- 327. |
| 6 | Wang E , Tran KL , D'Heygere E , et al. Predicting the premorbid shape of a diseased mandible[J]. Laryngoscope, 2021, 131 (3): E781- E786. |
| 7 | 史雨林. 骨性Ⅲ类患者正颌手术前后面部软硬组织变化的3D研究[D]. 西安: 中国人民解放军空军军医大学, 2018. |
| 8 | 潘思思, 王昕, 戴微微, 等. 替牙期儿童下颌骨发育的三维特征[J]. 温州医科大学学报, 2014, 44 (10): 712- 717. |
| 9 | Neelapu BC , Kharbanda OP , Sardana V , et al. Automatic localization of three-dimensional cephalometric landmarks on CBCT images by extracting symmetry features of the skull[J]. Dentomaxillofac Radiol, 2018, 47 (2): 20170054. |
| 10 | Zhang J , Liu M , Wang L , et al. Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks[J]. Med Image Comput Comput Assist Interv, 2017, 10434, 720- 728. |
| 11 | Zhang J , Liu M , Wang L , et al. Context-guided fully convolu-tional networks for joint craniomaxillofacial bone segmentation and landmark digitization[J]. Med Image Anal, 2020, 60, 101621. |
| 12 | Zheng YF, Liu D, Georgescu B, et al. 3D deep learning for efficient and robust landmark detection in volumetric data: 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)[C]. Munich, Germany: Springer, 2015: 565-572. |
| 13 | White JD , Ortega-Castrillón A , Matthews H , et al. MeshMonk: Open-source large-scale intensive 3D phenotyping[J]. Sci Rep, 2019, 9 (1): 6085. |
| 14 | 任敏. 基于MSCT汉族成年人群活体下颌骨三维测量数据库的建立及三维测量研究[D]. 北京: 北京协和医学院, 2008. |
| 15 | Goodall C . Procrustes methods in the statistical analysis of shape[J]. J R Stat Soc B, 1991, 53 (2): 285- 321. |
| 16 | 温奥楠, 朱玉佳, 郑盛文, 等. 基于三维人脸模板的颜面解剖标志点自动定点方法初探[J]. 中华口腔医学杂志, 2022, 57 (4): 358- 365. |
| 17 | Ghoddousi H , Edler R , Haers P , et al. Comparison of three methods of facial measurement[J]. Int J Oral Maxillofac Surg, 2007, 36 (3): 250- 258. |
| 18 | Douglas TS . Image processing for craniofacial landmark identification and measurement: A review of photogrammetry and cephalo-metry[J]. Comput Med Imaging Graph, 2004, 28 (7): 401- 409. |
| 19 | Abu A , Ngo CG , Abu-Hassan NIA , et al. Automated craniofacial landmarks detection on 3D image using geometry characteristics information[J]. BMC Bioinformatics, 2019, 19 (Suppl 13): 548. |
| 20 | Liang S, Wu J, Weinberg SM, et al. Improved detection of landmarks on 3D human face data: 35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)[C] Osaka, Japan: Institule of Electrical and Electronics Engineers, 2013: 6482-6485. |
| 21 | Wang K , Zhao X , Gao W , et al. A coarse-to-fine approach for 3D facial landmarking by using deep feature fusion[J]. Symmetry, 2018, 10 (8): 308. |
| 22 | Paulsen RR, Juhl KA, Haspang TM, et al. Multi-view consensus CNN for 3D facial landmark placement: 14th Asian Conference on Computer Vision (ACCV)[C]. Australia: Springer, 2019: 706-719. |
| 23 | 李婧宇. 北方汉族女性三维平均脸的构建并用于面部形态随年龄变化研究[D]. 北京: 北京协和医学院, 2017. |
| 24 | Kuijpers M , Maal T , Meulstee JW , et al. Nasolabial shape and aesthetics in unilateral cleft lip and palate: An analysis of nasolabial shape using a mean 3D facial template[J]. Int J Oral Maxillofac Surg, 2021, 50 (2): 267- 272. |
| 25 | Damstra J , Fourie Z , De Wit M , et al. A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry[J]. Clin Oral Investig, 2012, 16 (1): 285- 294. |
| 26 | Fagertun J , Harder S , Rosengren A , et al. 3D facial landmarks: Inter-operator variability of manual annotation[J]. BMC Med Imaging, 2014, 14, 35. |
/
| 〈 |
|
〉 |