论著

不同pH值对脱细胞小肠黏膜下层海绵支架螯合锶离子的影响

  • 李雨柯 ,
  • 王梅 ,
  • 唐琳 ,
  • 刘玉华 ,
  • 陈晓颖
展开
  • 1. 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081
    2. 首都医科大学附属北京朝阳医院口腔科, 北京 100020

收稿日期: 2022-10-12

  网络出版日期: 2023-01-31

Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds

  • Yu-ke LI ,
  • Mei WANG ,
  • Lin TANG ,
  • Yu-hua LIU ,
  • Xiao-ying CHEN
Expand
  • 1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China

Received date: 2022-10-12

  Online published: 2023-01-31

摘要

目的: 设计不同pH值下螯合锶(strontium, Sr)的脱细胞小肠黏膜下层(decellularized small intestinal submucosa, dSIS)海绵支架(Sr/dSIS), 以该支架的理化性能和生物相容性为评价指标, 为制备Sr/dSIS选择合适的pH值。方法: (1) Sr/dSIS制备及分组: 将dSIS溶液与氯化锶溶液等体积混合, 调节溶液pH分别为3、5、7、9, 于37℃下充分反应后经冷冻干燥制得多孔支架, 分别命名为Sr/dSIS-3、-5、-7、-9, 以dSIS支架为对照; (2)理化性能评价: 观察支架大体形貌, 采用扫描电镜分析微观形貌并测定孔隙率和孔径, 能谱分析表面元素, 红外光谱分析官能团结构, 原子吸收分光光度法测定螯合率, 比重法检测吸水率, 万能力学测试机评价压缩强度; (3)生物相容性评价: 采用Calcein-AM/PI活细胞/死细胞染色法评价各组支架的毒性和促骨髓间充质干细胞(bone mesenchymal stem cells, BMSCs)增殖效果。结果: 扫描电镜下各组支架具有三维多孔网络结构, 孔径和孔隙率差异无统计学意义; 能谱分析中Sr/dSIS-5、-7、-9组检测出锶元素的特征峰, 且锶元素均匀分布于支架; 官能团分析验证了Sr/dSIS-5、-7、-9组有螯合物形成; 螯合率分析显示Sr/dSIS-7组锶离子螯合率最高, 与其他组的差异有统计学意义(P < 0.05);各组支架吸水性良好; Sr/dSIS-5、-7、-9组的压缩强度显著高于对照组(P < 0.05);各组支架的生物相容性良好, Sr/dSIS-7组展现出最佳的促细胞增殖能力。结论: pH为7时, Sr/dSIS支架具有高锶离子螯合率以及更好的促BMSCs增殖效果, 是制备Sr/dSIS支架的理想pH值。

本文引用格式

李雨柯 , 王梅 , 唐琳 , 刘玉华 , 陈晓颖 . 不同pH值对脱细胞小肠黏膜下层海绵支架螯合锶离子的影响[J]. 北京大学学报(医学版), 2023 , 55(1) : 44 -51 . DOI: 10.19723/j.issn.1671-167X.2023.01.007

Abstract

Objective: To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes. Methods: (1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method. Results: Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs. Conclusion: When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.

参考文献

1 Andrée B , B?r A , Haverich A , et al. Small intestinal submucosa segments as matrix for tissue engineering: review[J]. Tissue Eng Part B Rev, 2013, 19 (4): 279- 291.
2 Tian Q , Fan Y , Hao L , et al. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways[J]. Crit Rev Food Sci Nutr, 2021, 61 (11): 1- 13.
3 O'Neill E , Awale G , Daneshmandi L , et al. The roles of ions on bone regeneration[J]. Drug Discov Today, 2018, 23 (4): 879- 890.
4 Wu W , He L , Liang Y , et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chem, 2019, 284 (30): 80- 89.
5 蔡冰娜, 陈忻, 潘剑宇, 等. 响应面法优化鳕鱼皮胶原蛋白肽螯合铁工艺[J]. 食品科学, 2012, 33 (2): 48- 52.
6 Bi J , Wang X , Zhou Y , et al. Preparation and characterization for peptide-chelated calcium of deer bone[J]. Food Sci Technol Res, 2018, 24 (4): 717- 728.
7 韩克光, 甄守艳, 范华, 等. 钙螯合羊骨胶原多肽的制备及表征分析[J]. 农业工程学报, 2015, 31 (21): 301- 307.
8 Zhang H , Zhao L , Shen Q , et al. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability[J]. LWT-Food Sci Technol, 2021, 144 (12): 111264.
9 陆剑锋, 孟昌伟, 李进, 等. 斑点叉尾鱼骨胶原多肽螯合钙的制备及其特征[J]. 水产学报, 2012, 36 (2): 314- 320.
10 Crapo PM , Gilbert TW , Badylak SF . An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32 (12): 3233- 3243.
11 Li B , Wang M , Liu Y , et al. Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration[J]. Colloids Surf B Biointerfaces, 2022, 212, 112370.
12 Reing JE , Brown BN , Daly KA , et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds[J]. Biomaterials, 2010, 31 (33): 8626- 8633.
13 Ji Y , Zhou J , Sun T , et al. Diverse preparation methods for small intestinal submucosa (SIS): Decellularization, components, and structure[J]. J Biomed Mater Res A, 2019, 107 (3): 689- 697.
14 Cowles EA , Brailey LL , Gronowicz GA . Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts[J]. J Biomed Mater Res, 2000, 52 (4): 725- 737.
15 Yi S , Ding F , Gong L , et al. Extracellular matrix scaffolds for tissue engineering and regenerative medicine[J]. Curr Stem Cell Res Ther, 2017, 12 (3): 233- 246.
16 Liao J , Xu B , Zhang R , et al. Applications of decellularized materials in tissue engineering: Advantages, drawbacks and current improvements, and future perspectives[J]. J Mater Chem B, 2020, 8 (44): 10023- 10049.
17 Gorschewsky O , Puetz A , Riechert K , et al. Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts[J]. Biomed Mater Eng, 2005, 15 (6): 403- 411.
18 Bharadwaz A , Jayasuriya AC . Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110, 110698.
19 Chandika P , Ko SC , Oh GW , et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application[J]. Int J Biol Macromol, 2015, 81 (8): 504- 513.
20 Castilla Bola?os MA , Buttigieg J , Brice?o Triana JC . Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2017, 72, 519- 525.
21 Liu J , Zeng H , Xiao P , et al. Sustained release of magnesium ions mediated by a dynamic mechanical hydrogel to enhance BMSC proliferation and differentiation[J]. ACS Omega, 2020, 5 (38): 24477- 24486.
文章导航

/