述评

肿瘤病理学研究的进展和展望

  • 周桥
展开
  • 1 四川大学华西医院病理科, 成都 610041
    2 四川大学华西医院病理研究室, 成都 610041

收稿日期: 2022-11-15

  网络出版日期: 2023-04-12

本文引用格式

周桥 . 肿瘤病理学研究的进展和展望[J]. 北京大学学报(医学版), 2023 , 55(2) : 201 -209 . DOI: 10.19723/j.issn.1671-167X.2023.02.002

参考文献

1 Hanahan D . Hallmarks of cancer: New dimensions[J]. Cancer Discov, 2022, 12 (1): 31- 46.
2 Bailey MH , Tokheim C , Porta-Pardo E , et al. Comprehensive characterization of cancer driver genes and mutations[J]. Cell, 2018, 173 (2): 371- 385.
3 Castro E , Romero-Laorden N , Del-Pozo A , et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2019, 37 (6): 490- 503.
4 Abida W , Patnaik A , Campbell D , et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration[J]. J Clin Oncol, 2020, 38 (32): 3763- 3772.
5 Salem ME , Bodor JN , Puccini A , et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1 057 microsatellite instability-high solid tumors[J]. Int J Cancer, 2020, 147 (10): 2948- 2956.
6 Abida W , Cheng ML , Armenia J , et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade[J]. JAMA Oncol, 2019, 5 (4): 471- 478.
7 Yang L , Liu Q , Zhang X , et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583 (7814): 133- 138.
8 Li Y , He X , Lu X , et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions[J]. Nat Commun, 2022, 13 (1): 6350.
9 Delaunay S , Pascual G , Feng B , et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis[J]. Nature, 2022, 607 (7919): 593- 603.
10 Cui H , Yi H , Bao H , et al. The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-beta signaling[J]. Nat Commun, 2022, 13 (1): 4680.
11 Na F , Pan X , Chen J , et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming[J]. Nat Cancer, 2022, 3 (6): 753- 767.
12 Ge X , Li M , Yin J , et al. Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type 2 papillary renal cell carcinoma[J]. Mol Cell, 2022, 82 (7): 1249- 1260.
13 Sulkowski PL , Oeck S , Dow J , et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling[J]. Nature, 2020, 582 (7813): 586- 591.
14 Sciacovelli M , Goncalves E , Johnson TI , et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition[J]. Nature, 2016, 537 (7621): 544- 547.
15 Shi Z , Ge X , Li M , et al. Argininosuccinate lyase drives activation of mutant TERT promoter in glioblastomas[J]. Mol Cell, 2022, 82 (20): 3919- 3931.
16 Xu M , Chen X , Chen N , et al. Synergistic silencing by promoter methylation and reduced AP-2 alpha transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth[J]. Am J Pathol, 2013, 182 (1): 84- 95.
17 Capper D , Jones DTW , Sill M , et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555 (7697): 469- 474.
18 Zuccato J A , Patil V , Mansouri S , et al. DNA methylation-based prognostic subtypes of chordoma tumors in tissue and plasma[J]. Neuro Oncol, 2022, 24 (3): 442- 454.
19 Sjostrom M , Zhao SG , Levy S , et al. The 5-hydroxymethylcytosine landscape of prostate cancer[J]. Cancer Res, 2022, 82 (21): 3888- 3902.
20 Deng S , Zhang J , Su J , et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility[J]. Nat Genet, 2022, 54 (9): 1427- 1437.
21 Liu X , Wang J , Boyer J A , et al. Histone H3 proline 16 hydroxylation regulates mammalian gene expression[J]. Nat Genet, 2022, 54 (11): 1721- 1735.
22 Li Y , Xia L , Tan K , et al. N(6)-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2[J]. Nat Genet, 2020, 52 (9): 870- 877.
23 Mittal P , Roberts CWM . The SWI/SNF complex in cancer: Biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020, 17 (7): 435- 448.
24 Bayona-Feliu A , Barroso S , Munoz S , et al. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts[J]. Nat Genet, 2021, 53 (7): 1050- 1063.
25 Xiao L , Parolia A , Qiao Y , et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer[J]. Nature, 2022, 601 (7893): 434- 439.
26 Alberti S , Gladfelter A , Mittag T . Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176 (3): 419- 434.
27 Cheng Y , Shen Z , Gao Y , et al. Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas[J]. Nat Commun, 2022, 13 (1): 2724.
28 Mcbride MJ , Pulice JL , Beird HC , et al. The SS18-SSX fusion oncoprotein Hijacks BAF complex targeting and function to drive synovial sarcoma[J]. Cancer Cell, 2018, 33 (6): 1128- 1141.
29 Yanchus C , Drucker KL , Kollmeyer TM , et al. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation[J]. Science, 2022, 378 (6615): 68- 78.
30 Wu S , Bafna V , Chang HY , et al. Extrachromosomal DNA: An emerging hallmark in human cancer[J]. Annu Rev Pathol, 2022, 17, 367- 386.
31 Wu S , Turner KM , Nguyen N , et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575 (7784): 699- 703.
32 Morton AR , Dogan-Artun N , Faber Z J , et al. Functional enhancers shape extrachromosomal oncogene amplifications[J]. Cell, 2019, 179 (6): 1330- 1341.
33 Zhang Y , Qian J , Gu C , et al. Alternative splicing and cancer: A systematic review[J]. Signal Transduct Target Ther, 2021, 6 (1): 78.
34 Larionova TD , Bastola S , Aksinina TE , et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells[J]. Nat Cell Biol, 2022, 24 (10): 1541- 1557.
35 Pan XY , Su ZZ , Zhong JJ , et al. Regulatory RNAs in the molecular pathology of neoplasia (in Chinese)[J]. Sci Sin Vitae, 2022, 52, 1578- 1602.
36 Chen X , Gong J , Zeng H , et al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression[J]. Cancer Res, 2010, 70 (7): 2728- 2738.
37 Su W , Xu M , Chen X , et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer[J]. Mol Cancer, 2017, 16 (1): 142.
38 Zhong J , Xu M , Su Z , et al. A novel promoter-associated non-coding small RNA paGLI1 recruits FUS/P65 to transactivate GLI1 gene expression and promotes infiltrating glioma progression[J]. Cancer Lett, 2022, 530, 68- 84.
39 Su Z, Zhang M, Luo H, et al. circEZH2E2/E3 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression[J]. Cancer Sci, 2022, 12 (2022-12-15)[2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/36519785/.
40 Palma M , Lejeune F . Deciphering the molecular mechanism of stop codon readthrough[J]. Biol Rev Camb Philos Soc, 2021, 96 (1): 310- 329.
41 Omachi K , Kai H , Roberge M , et al. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough[J]. iScience, 2022, 25 (3): 103891.
42 Abreu RBV , Gomes TT , Nepomuceno TC , et al. Functional restoration of BRCA1 nonsense mutations by aminoglycoside-induced readthrough[J]. Front Pharmacol, 2022, 13, 935995.
43 Wang J , Xie GF , He Y , et al. Interfering expression of chimeric transcript SEPT7P2-PSPH promotes cell proliferation in patients with nasopharyngeal carcinoma[J]. J Oncol, 2019, 2019, 1654724.
44 Wang Y , Zou Q , Li F , et al. Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts[J]. Nat Commun, 2021, 12 (1): 4645.
45 Barbieri I , Kouzarides T . Role of RNA modifications in cancer[J]. Nat Rev Cancer, 2020, 20 (6): 303- 322.
46 Nombela P , Miguel-Lopez B , Blanco S . The role of m6A, m5C and Psi RNA modifications in cancer: Novel therapeutic opportunities[J]. Mol Cancer, 2021, 20 (1): 18.
47 Flynn RA , Pedram K , Malaker SA , et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells[J]. Cell, 2021, 184 (12): 3109- 3124.
48 Dejea CM , Fathi P , Craig JM , et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359 (6375): 592- 597.
49 Garrett WS . Cancer and the microbiota[J]. Science, 2015, 348 (6230): 80- 86.
50 Sepich-Poore GD , Zitvogel L , Straussman R , et al. The microbiome and human cancer[J]. Science, 2021, 371 (6536): eabc4552.
51 Gur C , Ibrahim Y , Isaacson B , et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42 (2): 344- 355.
52 Vivarelli S , Salemi R , Candido S , et al. Gut microbiota and cancer: From pathogenesis to therapy[J]. Cancers (Basel), 2019, 11 (1): 38.
53 Metsaniitty M , Hasnat S , Salo T , et al. Oral microbiota: A new frontier in the pathogenesis and management of head and neck cancers[J]. Cancers (Basel), 2021, 14 (1): 46.
54 Marshall EA , Filho FSL , Sin DD , et al. Distinct bronchial microbiome precedes clinical diagnosis of lung cancer[J]. Mol Cancer, 2022, 21 (1): 68.
55 Laniewski P , Ilhan ZE , Herbst-Kralovetz MM . The microbiome and gynaecological cancer development, prevention and therapy[J]. Nat Rev Urol, 2020, 17 (4): 232- 250.
56 Nejman D , Livyatan I , Fuks G , et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368 (6494): 973- 980.
57 Fu A , Yao B , Dong T , et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185 (8): 1356- 1372.
58 Riquelme E , Zhang Y , Zhang L , et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178 (4): 795- 806.
59 Narunsky-Haziza L , Sepich-Poore GD , Livyatan I , et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions[J]. Cell, 2022, 185 (20): 3789- 3806.
60 Dohlman AB , Klug J , Mesko M , et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185 (20): 3807- 3822.
61 Shiao SL , Kershaw KM , Limon JJ , et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39 (9): 1202- 1213.
62 Jia Q , Chu H , Jin Z , et al. High-throughput single-cell sequencing in cancer research[J]. Signal Transduct Target Ther, 2022, 7 (1): 145.
63 Rao A , Barkley D , Franca GS , et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596 (7871): 211- 220.
64 Ji AL , Rubin AJ , Thrane K , et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma[J]. Cell, 2020, 182 (2): 497- 514.
65 Doudna JA . The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578 (7794): 229- 236.
文章导航

/