周桥 . 肿瘤病理学研究的进展和展望[J]. 北京大学学报(医学版), 2023 , 55(2) : 201 -209 . DOI: 10.19723/j.issn.1671-167X.2023.02.002
| 1 | Hanahan D . Hallmarks of cancer: New dimensions[J]. Cancer Discov, 2022, 12 (1): 31- 46. |
| 2 | Bailey MH , Tokheim C , Porta-Pardo E , et al. Comprehensive characterization of cancer driver genes and mutations[J]. Cell, 2018, 173 (2): 371- 385. |
| 3 | Castro E , Romero-Laorden N , Del-Pozo A , et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2019, 37 (6): 490- 503. |
| 4 | Abida W , Patnaik A , Campbell D , et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration[J]. J Clin Oncol, 2020, 38 (32): 3763- 3772. |
| 5 | Salem ME , Bodor JN , Puccini A , et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1 057 microsatellite instability-high solid tumors[J]. Int J Cancer, 2020, 147 (10): 2948- 2956. |
| 6 | Abida W , Cheng ML , Armenia J , et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade[J]. JAMA Oncol, 2019, 5 (4): 471- 478. |
| 7 | Yang L , Liu Q , Zhang X , et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583 (7814): 133- 138. |
| 8 | Li Y , He X , Lu X , et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions[J]. Nat Commun, 2022, 13 (1): 6350. |
| 9 | Delaunay S , Pascual G , Feng B , et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis[J]. Nature, 2022, 607 (7919): 593- 603. |
| 10 | Cui H , Yi H , Bao H , et al. The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-beta signaling[J]. Nat Commun, 2022, 13 (1): 4680. |
| 11 | Na F , Pan X , Chen J , et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming[J]. Nat Cancer, 2022, 3 (6): 753- 767. |
| 12 | Ge X , Li M , Yin J , et al. Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type 2 papillary renal cell carcinoma[J]. Mol Cell, 2022, 82 (7): 1249- 1260. |
| 13 | Sulkowski PL , Oeck S , Dow J , et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling[J]. Nature, 2020, 582 (7813): 586- 591. |
| 14 | Sciacovelli M , Goncalves E , Johnson TI , et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition[J]. Nature, 2016, 537 (7621): 544- 547. |
| 15 | Shi Z , Ge X , Li M , et al. Argininosuccinate lyase drives activation of mutant TERT promoter in glioblastomas[J]. Mol Cell, 2022, 82 (20): 3919- 3931. |
| 16 | Xu M , Chen X , Chen N , et al. Synergistic silencing by promoter methylation and reduced AP-2 alpha transactivation of the proapoptotic HRK gene confers apoptosis resistance and enhanced tumor growth[J]. Am J Pathol, 2013, 182 (1): 84- 95. |
| 17 | Capper D , Jones DTW , Sill M , et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555 (7697): 469- 474. |
| 18 | Zuccato J A , Patil V , Mansouri S , et al. DNA methylation-based prognostic subtypes of chordoma tumors in tissue and plasma[J]. Neuro Oncol, 2022, 24 (3): 442- 454. |
| 19 | Sjostrom M , Zhao SG , Levy S , et al. The 5-hydroxymethylcytosine landscape of prostate cancer[J]. Cancer Res, 2022, 82 (21): 3888- 3902. |
| 20 | Deng S , Zhang J , Su J , et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility[J]. Nat Genet, 2022, 54 (9): 1427- 1437. |
| 21 | Liu X , Wang J , Boyer J A , et al. Histone H3 proline 16 hydroxylation regulates mammalian gene expression[J]. Nat Genet, 2022, 54 (11): 1721- 1735. |
| 22 | Li Y , Xia L , Tan K , et al. N(6)-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2[J]. Nat Genet, 2020, 52 (9): 870- 877. |
| 23 | Mittal P , Roberts CWM . The SWI/SNF complex in cancer: Biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020, 17 (7): 435- 448. |
| 24 | Bayona-Feliu A , Barroso S , Munoz S , et al. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts[J]. Nat Genet, 2021, 53 (7): 1050- 1063. |
| 25 | Xiao L , Parolia A , Qiao Y , et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer[J]. Nature, 2022, 601 (7893): 434- 439. |
| 26 | Alberti S , Gladfelter A , Mittag T . Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176 (3): 419- 434. |
| 27 | Cheng Y , Shen Z , Gao Y , et al. Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas[J]. Nat Commun, 2022, 13 (1): 2724. |
| 28 | Mcbride MJ , Pulice JL , Beird HC , et al. The SS18-SSX fusion oncoprotein Hijacks BAF complex targeting and function to drive synovial sarcoma[J]. Cancer Cell, 2018, 33 (6): 1128- 1141. |
| 29 | Yanchus C , Drucker KL , Kollmeyer TM , et al. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation[J]. Science, 2022, 378 (6615): 68- 78. |
| 30 | Wu S , Bafna V , Chang HY , et al. Extrachromosomal DNA: An emerging hallmark in human cancer[J]. Annu Rev Pathol, 2022, 17, 367- 386. |
| 31 | Wu S , Turner KM , Nguyen N , et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575 (7784): 699- 703. |
| 32 | Morton AR , Dogan-Artun N , Faber Z J , et al. Functional enhancers shape extrachromosomal oncogene amplifications[J]. Cell, 2019, 179 (6): 1330- 1341. |
| 33 | Zhang Y , Qian J , Gu C , et al. Alternative splicing and cancer: A systematic review[J]. Signal Transduct Target Ther, 2021, 6 (1): 78. |
| 34 | Larionova TD , Bastola S , Aksinina TE , et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells[J]. Nat Cell Biol, 2022, 24 (10): 1541- 1557. |
| 35 | Pan XY , Su ZZ , Zhong JJ , et al. Regulatory RNAs in the molecular pathology of neoplasia (in Chinese)[J]. Sci Sin Vitae, 2022, 52, 1578- 1602. |
| 36 | Chen X , Gong J , Zeng H , et al. MicroRNA145 targets BNIP3 and suppresses prostate cancer progression[J]. Cancer Res, 2010, 70 (7): 2728- 2738. |
| 37 | Su W , Xu M , Chen X , et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer[J]. Mol Cancer, 2017, 16 (1): 142. |
| 38 | Zhong J , Xu M , Su Z , et al. A novel promoter-associated non-coding small RNA paGLI1 recruits FUS/P65 to transactivate GLI1 gene expression and promotes infiltrating glioma progression[J]. Cancer Lett, 2022, 530, 68- 84. |
| 39 | Su Z, Zhang M, Luo H, et al. circEZH2E2/E3 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression[J]. Cancer Sci, 2022, 12 (2022-12-15)[2022-12-30]. https://pubmed.ncbi.nlm.nih.gov/36519785/. |
| 40 | Palma M , Lejeune F . Deciphering the molecular mechanism of stop codon readthrough[J]. Biol Rev Camb Philos Soc, 2021, 96 (1): 310- 329. |
| 41 | Omachi K , Kai H , Roberge M , et al. NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough[J]. iScience, 2022, 25 (3): 103891. |
| 42 | Abreu RBV , Gomes TT , Nepomuceno TC , et al. Functional restoration of BRCA1 nonsense mutations by aminoglycoside-induced readthrough[J]. Front Pharmacol, 2022, 13, 935995. |
| 43 | Wang J , Xie GF , He Y , et al. Interfering expression of chimeric transcript SEPT7P2-PSPH promotes cell proliferation in patients with nasopharyngeal carcinoma[J]. J Oncol, 2019, 2019, 1654724. |
| 44 | Wang Y , Zou Q , Li F , et al. Identification of the cross-strand chimeric RNAs generated by fusions of bi-directional transcripts[J]. Nat Commun, 2021, 12 (1): 4645. |
| 45 | Barbieri I , Kouzarides T . Role of RNA modifications in cancer[J]. Nat Rev Cancer, 2020, 20 (6): 303- 322. |
| 46 | Nombela P , Miguel-Lopez B , Blanco S . The role of m6A, m5C and Psi RNA modifications in cancer: Novel therapeutic opportunities[J]. Mol Cancer, 2021, 20 (1): 18. |
| 47 | Flynn RA , Pedram K , Malaker SA , et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells[J]. Cell, 2021, 184 (12): 3109- 3124. |
| 48 | Dejea CM , Fathi P , Craig JM , et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria[J]. Science, 2018, 359 (6375): 592- 597. |
| 49 | Garrett WS . Cancer and the microbiota[J]. Science, 2015, 348 (6230): 80- 86. |
| 50 | Sepich-Poore GD , Zitvogel L , Straussman R , et al. The microbiome and human cancer[J]. Science, 2021, 371 (6536): eabc4552. |
| 51 | Gur C , Ibrahim Y , Isaacson B , et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42 (2): 344- 355. |
| 52 | Vivarelli S , Salemi R , Candido S , et al. Gut microbiota and cancer: From pathogenesis to therapy[J]. Cancers (Basel), 2019, 11 (1): 38. |
| 53 | Metsaniitty M , Hasnat S , Salo T , et al. Oral microbiota: A new frontier in the pathogenesis and management of head and neck cancers[J]. Cancers (Basel), 2021, 14 (1): 46. |
| 54 | Marshall EA , Filho FSL , Sin DD , et al. Distinct bronchial microbiome precedes clinical diagnosis of lung cancer[J]. Mol Cancer, 2022, 21 (1): 68. |
| 55 | Laniewski P , Ilhan ZE , Herbst-Kralovetz MM . The microbiome and gynaecological cancer development, prevention and therapy[J]. Nat Rev Urol, 2020, 17 (4): 232- 250. |
| 56 | Nejman D , Livyatan I , Fuks G , et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368 (6494): 973- 980. |
| 57 | Fu A , Yao B , Dong T , et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185 (8): 1356- 1372. |
| 58 | Riquelme E , Zhang Y , Zhang L , et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178 (4): 795- 806. |
| 59 | Narunsky-Haziza L , Sepich-Poore GD , Livyatan I , et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions[J]. Cell, 2022, 185 (20): 3789- 3806. |
| 60 | Dohlman AB , Klug J , Mesko M , et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors[J]. Cell, 2022, 185 (20): 3807- 3822. |
| 61 | Shiao SL , Kershaw KM , Limon JJ , et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy[J]. Cancer Cell, 2021, 39 (9): 1202- 1213. |
| 62 | Jia Q , Chu H , Jin Z , et al. High-throughput single-cell sequencing in cancer research[J]. Signal Transduct Target Ther, 2022, 7 (1): 145. |
| 63 | Rao A , Barkley D , Franca GS , et al. Exploring tissue architecture using spatial transcriptomics[J]. Nature, 2021, 596 (7871): 211- 220. |
| 64 | Ji AL , Rubin AJ , Thrane K , et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma[J]. Cell, 2020, 182 (2): 497- 514. |
| 65 | Doudna JA . The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578 (7794): 229- 236. |
/
| 〈 |
|
〉 |