论著

长期自由选择饮酒小鼠模型的建立及其行为学评价

  • 袁婷婷 ,
  • 李燊 ,
  • 吴燕 ,
  • 吴海涛
展开
  • 1. 南华大学衡阳医学院军事科学院研究生培养基地,湖南衡阳 421001
    2. 军事科学院军事医学研究院军事认知与脑科学研究所,北京 100850

收稿日期: 2022-02-21

  网络出版日期: 2023-04-12

Establishment and behavioral evaluation of a mouse model of long-term free-choice alcohol drinking

  • Ting-ting YUAN ,
  • Shen LI ,
  • Yan WU ,
  • Hai-tao WU
Expand
  • 1. Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical school, University of South China, Hengyang 421001, Hunan, China
    2. Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China

Received date: 2022-02-21

  Online published: 2023-04-12

摘要

目的: 建立长期自由饮酒小鼠的模型模拟人类自愿长期饮酒的状态,探讨长期自由饮酒小鼠模型在运动、焦虑及认知行为方面的评价标准。方法: 使用6周龄SPF级C57BL/6J雄性小鼠40只,随机分为长期自由饮酒组(n=20)和正常对照组(n=20)。两组小鼠固体饲料正常给予,长期自由饮酒组小鼠每日自由摄取10% (体积分数)酒精和水, 正常对照组每日仅摄取水。饲养时间为7个月,并应用转棒实验、平衡木、矿场、高架十字、两箱社交行为学、新物体识别、Y迷宫、水迷宫等行为学测试对模型小鼠进行评价,每次进行行为学测试前需进行24 h的酒精戒断。结果: 随着饮酒天数的增加,在酒精偏好性测试中小鼠表现出明显嗜酒现象,长期自由选择饮酒组小鼠随着酒精摄入的增加,皮毛略有光泽,饮食量减少,与对照组相比,从第3个月开始体质量增加有减缓的趋势,在第6个月和第7个月时体质量显著降低(P=0.006,P < 0.001);在转棒和平衡木实验中小鼠表现出平衡运动能力减弱(P=0.003,P=0.001);在旷场和高架十字实验中小鼠有明显的焦虑样行为(P < 0.001);在两箱社交行为学测试中小鼠社交能力减少(P < 0.016);在新物体识别和Y迷宫实验测试中表现出对新物体的探索降低(P=0.018,P=0.040);在水迷宫中表现出学习和空间记忆等认知功能减弱(P < 0.001)。结论: 成功建立长期自由饮酒小鼠模型,为酒精成瘾的神经机制以及相关新靶点研究奠定了实验动物模型基础。

本文引用格式

袁婷婷 , 李燊 , 吴燕 , 吴海涛 . 长期自由选择饮酒小鼠模型的建立及其行为学评价[J]. 北京大学学报(医学版), 2023 , 55(2) : 315 -323 . DOI: 10.19723/j.issn.1671-167X.2023.02.016

Abstract

Objective: To establish a model of long-term free drinking mouse by feeding mice with alcohol to simulate the state of human voluntary long-term drinking, and on this basis, to further discuss the evaluation criteria of long-term free drinking mice model in sports, anxiety and cognitive behavior. Methods: Forty six-week-old SPF C57BL/6 male mouse were randomly divided into two groups: Long-term free drinking group (n=20) and normal control group (n=20). The two groups were given solid feed normally. The long-term free drinking group was free to take 10% alcohol and water every day, while the normal drinking group only took water every day. The mice were fed for 7 months, and were evaluated by a series of behavioral methods, including Rota-rod test, balance beam test, open filed test, the elevated plus maze, two-box social behavior, new object recognition, Y maze and water maze. Results: With the increase of drinking days, the mice showed significant alcohol addiction in the alcohol preference test. With the increase of alcohol intake, the mice in the long-term free choice drinking group had slightly shiny fur and reduced diet. Compared with the control group, the weight gain began to slow down from the third month, and the weight decreased significantly by the sixth and seventh months (P=0.006, P < 0.001). The mice showed reduced balance locomotion ability (P=0.003, P=0.001) in the rotary bar and balance beam test. In the open field and elevated cross test, the mice had obvious anxiety-like behavior (P < 0.001). The mice showed decreased social ability in the two boxes of social behavior (P < 0.016). In the experiment of new object recognition and Y maze, the exploration of new object decreased (P=0.018, P=0.040). In the water maze, cognitive functions, such as learning and spatial memory were reduced (P < 0.001). Conclusion: The successful establishment of the long-term free drinking mouse model is more convenient for us to carry out further research on the neural mechanism of alcohol addiction, and lays an experimental foundation for exploring the neural mechanism of alcohol addiction and related new targets.

参考文献

1 Wang SC , Chen YC , Chen SJ , et al. Alcohol addiction, gut microbiota, and alcoholism treatment: A review[J]. Int J Mol Sci, 2020, 21 (17): 6413.
2 Bree M . Combining research approaches to advance our understanding of drug addiction[J]. Current Psychiatry Reports, 2005, 7 (2): 125- 132.
3 Lemma A , Salelew E , Demilew D , et al. Alcohol use disorder and associated factors among University of Gondar undergraduate students: A cross-sectional study[J]. J Subst Abuse Treat, 2021, 129, 108373.
4 Dewari PS , Ajani F , Kushawah G , et al. Reversible loss of reproductive fitness in zebrafish on chronic alcohol exposure[J]. Alcohol, 2016, 50, 83- 89.
5 Iyer N , Vaishnava S . Alcohol lowers your (intestinal) inhibitions[J]. Cell Host Microbe, 2016, 19 (2): 131- 133.
6 Hwa LS , Chu A , Levinson SA , et al. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol[J]. Alcohol Clin Exp Res, 2011, 35 (11): 1938- 1947.
7 Marcus DJ , Henderson-Redmond AN , Gonek M , et al. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption[J]. PLoS One, 2017, 12 (4): e0174826.
8 王亚南, 刘儒林, 程秀臻. 酒精中毒大鼠动物模型的研究[J]. 中国康复理论与实践, 2006, 12 (4): 319- 320.
9 Okazaki S , Nagoya S , Tateda K , et al. Experimental rat model for alcohol-induced osteonecrosis of the femoral head[J]. Int J Exp Pathol, 2013, 94 (5): 312- 319.
10 Wang J , Du H , Jiang L , et al. Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure[J]. Proc Natl Acad Sci USA, 2013, 110 (35): 14444- 14449.
11 Xu GF , Wang XY , Ge GL , et al. Dynamic changes of capillarization and peri-sinusoid fibrosis in alcoholic liver diseases[J]. World J Gastroenterol, 2004, 10 (2): 238- 243.
12 Scott H , Tjernstrom N , Roman . Effects of pair housing on voluntary alcohol intake in male and female Wistar rats[J]. Alcohol, 2020, 86, 121- 128.
13 Juarez B , Morel C , Ku SM , et al. Author correction: Midbrain circuit regulation of individual alcohol drinking behaviors in mice[J]. Nat Commun, 2018, 9 (1): 653.
14 Romao-Torres M , Feranández-Guasti A . Estradiol valerate elicits antidepressant-like effects in middle-aged female rats under chronic mild stress[J]. Behav Pharmacol, 2010, 21 (2): 104- 111.
15 Song YN , Li HZ , Zhu JN , et al. Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus[J]. Neuroscience, 2006, 140 (1): 33- 43.
16 Kraeuter AK , Guest PC , Sarnyai Z . The open field test for measuring locomotor activity and anxiety-like behavior[J]. Methods Mol Biol, 2019, 1916, 99- 103.
17 Kraeuter AK , Guest PC , Sarnyai Z . The elevated plus maze test for measuring anxiety-like behavior in rodents[J]. Methods Mol Biol, 2019, 1916, 69- 74.
18 吴海涛, 赵哲. 一种小鼠社交行为研究用实验箱: 中国, CN110301364B[P/OL]. 2019-08-02[2021-09-24]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
19 Bevins RA , Besheer J . Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study 'recognition memory'[J]. Nat Protoc, 2006, 1 (3): 1306- 1311.
20 Fu Y , Wang C , Wang J , et al. Long-term exposure to extremely low-frequency magnetic fields impairs spatial recognition memory in mice[J]. Clin Exp Pharmacol Physiol, 2008, 35 (7): 797- 800.
21 Martin S , Jones M , Simpson E , et al. Impaired spatial reference memory in aromatase-deficient (ArKO) mice[J]. Neuroreport, 2003, 14 (15): 1979- 1982.
22 Bejar R , Yasuda R , Krugers H , et al. Transgenic calmodulin-dependent protein kinase Ⅱ activation: Dose-dependent effects on synaptic plasticity, learning, and memory[J]. J Neurosci, 2002, 22 (13): 5719- 5726.
23 Qian L , Chen Y , Shen C , et al. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB[J]. Faseb J, 2017, 31 (4): 1494- 1507.
24 佟昕琪, 于鸣, 王泓, 等. 酒精对大鼠学习记忆能力的影响[J]. 吉林医药学院学报, 2021, 42 (3): 172- 175.
25 Inagawa G , Sato K , Kikuchi T , et al. Chronic ethanol consumption does not affect action of propofol on rat hippocampal acetylcholine release in vivo[J]. Br J Anaesth, 2004, 93 (5): 737- 739.
26 Miller S , Yasuda M , Coats JK , et al. Disruption of dendritic translation of CaMKⅡalpha impairs stabilization of synaptic plasticity and memory consolidation[J]. Neuron, 2002, 36 (3): 507- 519.
27 Wang J , Wang Z , Li B , et al. Lycopene attenuates western-diet-induced cognitive deficits via improving glycolipid metabolism dysfunction and inflammatory responses in gut-liver-brain axis[J]. Int J Obes (Lond), 2019, 43 (9): 1735- 1746.
28 Liu ZG , Sun Yali , Qiao QL , et al. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system[J]. Food Funct, 2017, 8 (2): 710- 719.
29 Crupi R , Cambiaghi M , Spatz L , et al. Reduced adult neurogenesis and altered emotional behaviors in autoimmune-prone B-cell activating factor transgenic mice[J]. Biol psychiatry, 2010, 67 (6): 558- 566.
30 Oury F , Khristine L , Denny CA , et al. Maternal and offspring pools of osteocalcin influence brain development and functions[J]. Cell, 2013, 155 (1): 228- 241.
31 张富强, 唐甩恩, 周文华, 等. 程序诱导的大鼠酒精偏爱模型[J]. 中国药物滥用防治杂志, 2002, 14 (5): 14- 16.
32 Goldstein DB , Pal N . Alcohol dependence produced in mice by inhalation of ethanol: Grading the withdrawal reaction[J]. Science, 1971, 172 (3980): 288- 290.
33 Tsukamoto H , Reidelberger RD , French SW , et al. Long-term cannulation model for blood sampling and intragastric infusion in the rat[J]. Am J physiol, 1984, 247 (2/3): R595- 599.
34 Lieber CS . Microsomal ethanol-oxidizing system[J]. Enzyme, 1987, 37 (1/2): 45- 56.
35 陈韶华, 厉有名, 虞朝辉, 等. 急性乙醇中毒与内源性一氧化氮水平关系的实验研究[J]. 中国自然医学杂志, 2003, 5 (1): 24- 26.
36 In HS , Kim DW , Park YM , et al. Experimental intraperitoneal injection of alcohol in rats: Peritoneal findings and histopathology[J]. Toxicol Rep, 2014, 28 (1): 31- 35.
37 Cui SQ , Wang Q , Zheng Y , et al. Puerarin protects against damage to spatial learning and memory ability in mice with chronic alcohol poisoning[J]. Braz J Med Biol Res, 2015, 48 (6): 515- 522.
38 Umhau J C , Zhou W , Thada S , et al. Brain docosahexaenoic acid[DHA] incorporation and blood flow are increased in chronic alcoholics: A positron emission tomography study corrected for cerebral atrophy[J]. PLoS One, 2013, 8 (10): e75333.
39 Palm S , Nylander I . Alcohol-induced changes in opioid peptide levels in adolescent rats are dependent on housing conditions[J]. Alcohol Clin Exp Res, 2014, 38 (12): 2978- 2987.
40 Ozsoy S , Durak AC , Esel E . Hippocampal volumes and cognitive functions in adult alcoholic patients with adolescent-onset[J]. Alcohol, 2013, 47 (1): 9- 14.
文章导航

/