收稿日期: 2023-03-01
网络出版日期: 2023-06-12
基金资助
国家自然科学基金(82204135);北京市自然科学基金(7232237);中国博士后科学基金(BX2021021);中国博士后科学基金(2022M710249)
Genotype-environment interaction on arterial stiffness: A pedigree-based study
Received date: 2023-03-01
Online published: 2023-06-12
Supported by
the National Natural Science Foundation of China(82204135);the Beijing Natural Science Foundation(7232237);the China Postdoctoral Science Foundation(BX2021021);the China Postdoctoral Science Foundation(2022M710249)
目的: 利用北京房山家系队列研究的基线调查数据,探索基因-环境交互作用对动脉僵硬度的影响。方法: 选取来自北京市房山区9个乡镇的先证者及其亲属作为研究对象,以吸烟、饮酒、体重指数(body mass index,BMI)、膳食评分和体力活动作为行为生活方式因素,以肱-踝脉搏波传导速度(brachial-ankle pulse wave velocity,baPWV)和踝肱指数(ankle-brachial index,ABI)作为动脉僵硬度评价指标,采用方差组分模型估计动脉僵硬度的遗传度,利用极大似然法进行基因型-环境交互作用分析。基于基因型-环境交互作用分析识别的阳性环境因素,进一步选取糖脂代谢通路上的45个基因位点作为候选基因位点,利用广义估计方程模型,探索基因位点与生活方式间的交互作用对动脉僵硬度的影响。结果: 共纳入了来自3 225个家系的6 302名研究对象,研究对象的平均年龄为56.9岁,男性占比45.1%。估计得到baPWV和ABI的遗传度分别为0.360(95%CI:0.302~0.418)和0.243(95%CI:0.175~0.311)。基因型-环境交互作用结果显示,总体加性遗传效应与年龄、性别、膳食评分和BMI间存在交互作用,分别影响baPWV和ABI水平。以baPWV作为结局评价指标时,ADAMTS9-AS2基因上和CDH13基因上的2个单核苷酸多态性(single nucleotide polymorphism, SNP)位点均与膳食评分存在交互作用。高遗传风险的个体遵循健康的生活方式能够降低其动脉僵硬程度。以ABI作为研究终点时,CDKAL1、ATP8B2和SLC30A8基因上的3个SNP位点与BMI存在交互作用,影响动脉僵硬度水平。对于高遗传风险的个体,保持健康的BMI水平能够有效降低动脉僵硬度水平。结论: 本研究利用家系关系观察了基因型-健康膳食模式和基因型-BMI交互作用影响动脉僵硬度水平,发现5个SNP位点与二者存在交互作用;维持健康的生活方式和健康的BMI水平能够降低遗传因素对动脉僵硬度的影响,为识别动脉僵硬度的环境危险因素、制定人群精准预防控制策略提供了一定的研究基础和思路。
王雪珩 , 王斯悦 , 彭和香 , 范梦 , 郭煌达 , 侯天姣 , 王梦莹 , 武轶群 , 秦雪英 , 唐迅 , 李劲 , 陈大方 , 胡永华 , 吴涛 . 基因-环境交互作用对动脉僵硬度影响的家系研究[J]. 北京大学学报(医学版), 2023 , 55(3) : 400 -407 . DOI: 10.19723/j.issn.1671-167X.2023.03.003
Objective: To utilized the baseline data of the Beijing Fangshan Family Cohort Study, and to estimate whether the association between a healthy lifestyle and arterial stiffness might be modified by genetic effects. Methods: Probands and their relatives from 9 rural areas in Fangshan district, Beijing were included in this study. We developed a healthy lifestyle score based on five lifestyle behaviors: smoking, alcohol consumption, body mass index (BMI), dietary pattern, and physical activity. The measurements of arterial stiffness were brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI). A variance component model was used to determine the heritability of arterial stiffness. Genotype-environment interaction effects were performed by the maximum likelihood methods. Subsequently, 45 candidate single nucleotide polymorphisms (SNPs) located in the glycolipid metabolism pathway were selected, and generalized estimated equations were used to assess the gene-environment interaction effects between particular genetic loci and healthy lifestyles. Results: A total of 6 302 study subjects across 3 225 pedigrees were enrolled in this study, with a mean age of 56.9 years and 45.1% male. Heritability of baPWV and ABI was 0.360 (95%CI: 0.302-0.418) and 0.243 (95%CI: 0.175-0.311), respectively. Significant genotype-healthy diet interaction on baPWV and genotype-BMI interaction on ABI were observed. Following the findings of genotype-environment interaction analysis, we further identified two SNPs located in ADAMTS9-AS2 and CDH13 might modify the association between healthy dietary pattern and arterial stiffness, indicating that adherence to a healthy dietary pattern might attenuate the genetic risk on arterial stiffness. Three SNPs in CDKAL1, ATP8B2 and SLC30A8 were shown to interact with BMI, implying that maintaining BMI within a healthy range might decrease the genetic risk of arterial stiffness. Conclusion: The current study discovered that genotype-healthy dietary pattern and genotype-BMI interactions might affect the risk of arterial stiffness. Furthermore, we identified five genetic loci that might modify the relationship between healthy dietary pattern and BMI with arterial stiffness. Our findings suggested that a healthy lifestyle may reduce the genetic risk of arterial stiffness. This study has laid the groundwork for future research exploring mechanisms of arterial stiffness.
Key words: Arterial stiffness; Gene-environment interaction; Lifestyle; Pedigree
| 1 | Chirinos JA , Segers P , Hughes T , et al. Large-artery stiffness in health and disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 74 (9): 1237- 1263. |
| 2 | Boutouyrie P , Chowienczyk P , Humphrey JD , et al. Arterial stiffness and cardiovascular risk in hypertension[J]. Circ Res, 2021, 128 (7): 864- 886. |
| 3 | Willum-Hansen T , Staessen JA , Torp-Pedersen C , et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population[J]. Circulation, 2006, 113 (5): 664- 670. |
| 4 | Mitchell GF , Hwang SJ , Vasan RS , et al. Arterial stiffness and cardiovascular events[J]. Circulation, 2010, 121 (4): 505- 511. |
| 5 | Kim M , Yoo HJ , Lee HJ , et al. Longitudinal interaction between APOA-1131T>C and overweight in the acceleration of age-related increase in arterial stiffness through the regulation of circulating triglycerides[J]. Hypertens Res, 2019, 42 (2): 241- 248. |
| 6 | Choi S , Jung S , Kim MK , et al. Gene and dietary calcium interaction effects on brachial-ankle pulse wave velocity[J]. Clin Nutr, 2016, 35 (5): 1127- 1134. |
| 7 | Fung TT , Chiuve SE , McCullough ML , et al. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women[J]. Arch Intern Med, 2008, 168 (7): 713- 720. |
| 8 | Li Y , Schoufour J , Wang DD , et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study[J]. BMJ, 2020, 368, l6669. |
| 9 | 张存泰, 陶军, 田小利, 等. 血管衰老临床评估与干预中国专家共识(2018)[J]. 中华老年病研究电子杂志, 2019, 6 (1): 1- 8. |
| 10 | Arnett DK , Blumenthal RS , Albert MA , et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines[J]. J Am Coll Cardiol, 2019, 74 (10): e177- e232. |
| 11 | Mitchell GF , Verwoert GC , Tarasov KV , et al. Common genetic variation in the 3'-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: The AortaGen Consortium[J]. Circ Cardiovasc Genet, 2012, 5 (1): 81- 90. |
| 12 | Fung K , Ramirez J , Warren HR , et al. Genome-wide association study identifies loci for arterial stiffness index in 127, 121 UK Biobank participants[J]. Sci Rep, 2019, 9 (1): 9143. |
| 13 | Rode M , Teren A , Wirkner K , et al. Genome-wide association analysis of pulse wave velocity traits provide new insights into the causal relationship between arterial stiffness and blood pressure[J]. PLoS One, 2020, 15 (8): e0237237. |
| 14 | Poveda A , Chen Y , Br?ndstr?m A , et al. The heritable basis of gene-environment interactions in cardiometabolic traits[J]. Diabetologia, 2017, 60 (3): 442- 452. |
| 15 | Martin LJ , Kissebah AH , Sonnenberg GE , et al. Genotype-by-smoking interaction for leptin levels in the metabolic risk complications of obesity genes project[J]. Int J Obes Relat Metab Disord, 2003, 27 (3): 334- 340. |
| 16 | Sun K , Xiang X , Li N , et al. Gene-diet interaction between SIRT6 and soybean intake for different levels of pulse wave velocity[J]. Int J Mol Sci, 2015, 16 (7): 14338- 14352. |
| 17 | Boesgaard TW , Gjesing AP , Grarup N , et al. Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients: EUGENE2 study[J]. PLoS One, 2009, 4 (9): e7236. |
| 18 | Berria R , Wang L , Richardson DK , et al. Increased collagen content in insulin-resistant skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2006, 290 (3): E560- 565. |
| 19 | Hwang CL , Muchira J , Hibner BA , et al. Alcohol consumption: A new risk factor for arterial stiffness?[J]. Cardiovasc Toxicol, 2022, 22 (3): 236- 245. |
| 20 | Chung CM , Lin TH , Chen JW , et al. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes[J]. Diabetes, 2011, 60 (9): 2417- 2423. |
| 21 | Antoniades C , Antonopoulos AS , Tousoulis D , et al. Adiponectin: From obesity to cardiovascular disease[J]. Obes Rev, 2009, 10 (3): 269- 279. |
| 22 | Jo J , Sull JW , Park EJ , et al. Effects of smoking and obesity on the association between CDH13 (rs3865188) and adiponectin among Korean men: The KARE study[J]. Obesity, 2012, 20 (8): 1683- 1687. |
| 23 | Li YY , Wang LS , Lu XZ , et al. CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: A meta-analysis of 62, 567 subjects[J]. Sci Rep, 2013, 3 (1): 3131. |
| 24 | Imamura M , Takahashi A , Yamauchi T , et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes[J]. Nature Communications, 2016, 7 (1): 10531. |
| 25 | Lin Y , Li P , Cai L , et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population[J]. BMC Med Genet, 2010, 11 (1): 97. |
| 26 | Koskeridis F , Evangelou E , Said S , et al. Pleiotropic genetic architecture and novel loci for C-reactive protein levels[J]. Nat Commun, 2022, 13 (1): 6939. |
/
| 〈 |
|
〉 |