收稿日期: 2023-02-28
网络出版日期: 2023-06-12
基金资助
国家自然科学基金(82173616)
Development and validation of risk prediction model for new-onset cardiovascular diseases among breast cancer patients: Based on regional medical data of Inner Mongolia
Received date: 2023-02-28
Online published: 2023-06-12
Supported by
the National Natural Science Foundation of China(82173616)
目的: 开发和验证乳腺癌患者新发心血管疾病(cardiovascular disease, CVD)的3年预测模型。方法: 基于内蒙古区域医疗数据,纳入接受抗肿瘤治疗的18岁以上乳腺癌女性患者。多因素Fine & Gray模型纳入预测因子后,使用Lasso回归筛选变量,在训练集上拟合Cox比例风险、Logistic回归、Fine & Gray、随机森林和XGBoost模型,在测试集上分别用受试者工作特征(receiver operating characteristics, ROC)曲线下面积(area under the curve, AUC)和校准曲线评价模型区分度和校准度。结果: 共纳入19 325例接受抗肿瘤治疗的乳腺癌患者,平均年龄(52.76±10.44)岁,中位随访时间1.18年[四分位距(interquartile range, IQR):2.71]。7 856例患者(40.65%)在乳腺癌诊断3年内发生CVD。Lasso回归筛选的预测因子为乳腺癌诊断年龄、居住地国内生产总值(gross domestic product,GDP)、肿瘤分期、高血压、缺血性心脏病及脑血管疾病既往史、手术类型、化疗类型、放疗类型。不考虑生存时间时,XGBoost模型的AUC显著高于随机森林模型[0.660 (95%CI:0.644~0.675) vs. 0.608 (95%CI:0.591~0.624), P < 0.001]和Logistic回归[0.609 (95%CI:0.593~0.625), P < 0.001],Logistic回归和XGBoost模型的校准度更好。考虑生存时间时,Cox比例风险模型和Fine & Gray模型的AUC差异无统计学意义[0.600 (95%CI:0.584~0.616) vs. 0.615 (95%CI:0.599~0.631), P=0.188],但Fine & Gray模型的校准度更好。结论: 基于区域医疗数据建立乳腺癌新发CVD的预测模型具有可行性。不考虑生存时间时,Logistic回归和XGBoost模型的预测性能更好;考虑生存时间时,Fine & Gray模型的预测性能更好。
张云静 , 乔丽颖 , 祁萌 , 严颖 , 亢伟伟 , 刘国臻 , 王明远 , 席云峰 , 王胜锋 . 乳腺癌患者新发心血管疾病预测模型的建立与验证:基于内蒙古区域医疗数据[J]. 北京大学学报(医学版), 2023 , 55(3) : 471 -479 . DOI: 10.19723/j.issn.1671-167X.2023.03.013
Objective: To develop and validate a three-year risk prediction model for new-onset cardiovascular diseases (CVD) among female patients with breast cancer. Methods: Based on the data from Inner Mongolia Regional Healthcare Information Platform, female breast cancer patients over 18 years old who had received anti-tumor treatments were included. The candidate predictors were selected by Lasso regression after being included according to the results of the multivariate Fine & Gray model. Cox proportional hazard model, Logistic regression model, Fine & Gray model, random forest model, and XGBoost model were trained on the training set, and the model performance was evaluated on the testing set. The discrimination was evaluated by the area under the curve (AUC) of the receiver operator characteristic curve (ROC), and the calibration was evaluated by the calibration curve. Results: A total of 19 325 breast cancer patients were identified, with an average age of (52.76±10.44) years. The median follow-up was 1.18 [interquartile range (IQR): 2.71] years. In the study, 7 856 patients (40.65%) developed CVD within 3 years after the diagnosis of breast cancer. The final selected variables included age at diagnosis of breast cancer, gross domestic product (GDP) of residence, tumor stage, history of hypertension, ischemic heart disease, and cerebrovascular disease, type of surgery, type of chemotherapy and radiotherapy. In terms of model discrimination, when not considering survival time, the AUC of the XGBoost model was significantly higher than that of the random forest model [0.660 (95%CI: 0.644-0.675) vs. 0.608 (95%CI: 0.591-0.624), P < 0.001] and Logistic regression model [0.609 (95%CI: 0.593-0.625), P < 0.001]. The Logistic regression model and the XGBoost model showed better calibration. When considering survival time, Cox proportional hazard model and Fine & Gray model showed no significant difference for AUC [0.600 (95%CI: 0.584-0.616) vs. 0.615 (95%CI: 0.599-0.631), P=0.188], but Fine & Gray model showed better calibration. Conclusion: It is feasible to develop a risk prediction model for new-onset CVD of breast cancer based on regional medical data in China. When not considering survival time, the XGBoost model and the Logistic regression model both showed better performance; Fine & Gray model showed better performance in consideration of survival time.
| 1 | International Agency for Research on Cancer. World cancer day: Breast cancer overtakes lung cancer as leading cause of cancer worldwide. IARC showcases key research projects to address breast cancer [EB/OL]. (2021-02-04) [2023-02-20]. https://www.iarc.who.int/news-events/world-cancer-day-2021/. |
| 2 | Connor AE , Schmaltz CL , Jackson-Thompson J , et al. Comorbidities and the risk of cardiovascular disease mortality among racially diverse patients with breast cancer[J]. Cancer, 2021, 127 (15): 2614- 2622. |
| 3 | Abdel-Qadir H , Austin PC , Lee DS , et al. A population-based study of cardiovascular mortality following early-stage breast cancer[J]. JAMA Cardiol, 2017, 2 (1): 88- 93. |
| 4 | Sturgeon KM , Deng L , Bluethmann SM , et al. A population-based study of cardiovascular disease mortality risk in US cancer patients[J]. Eur Heart J, 2019, 40 (48): 3889- 3897. |
| 5 | Padegimas A , Clasen S , Ky B . Cardioprotective strategies to prevent breast cancer therapy-induced cardiotoxicity[J]. Trends Cardiovasc Med, 2020, 30 (1): 22- 28. |
| 6 | Mehta LS , Watson KE , Barac A , et al. Cardiovascular disease and breast cancer: Where these entities intersect: A scientific statement from the American Heart Association[J]. Circulation, 2018, 137 (8): e30- e66. |
| 7 | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021版)[J]. 中国癌症杂志, 2021, 31 (10): 954- 1040. |
| 8 | Li J , Qiang WM , Wang Y , et al. Development and validation of a risk assessment nomogram for venous thromboembolism associated with hospitalized postoperative Chinese breast cancer patients[J]. J Adv Nurs, 2021, 77 (1): 473- 483. |
| 9 | Ezaz G , Long JB , Gross CP , et al. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer[J]. J Am Heart Assoc, 2014, 3 (1): e000472. |
| 10 | Fogarassy G , Vathy-Fogarassy á , Kenessey I , et al. Risk prediction model for long-term heart failure incidence after epirubicin chemotherapy for breast cancer: A real-world data-based, nationwide classification analysis[J]. Int J Cardiol, 2019, 285, 47- 52. |
| 11 | Romond EH , Jeong JH , Rastogi P , et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer[J]. J Clin Oncol, 2012, 30 (31): 3792- 3799. |
| 12 | Abdel-Qadir H , Thavendiranathan P , Austin PC , et al. Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: A population-based cohort study[J]. Eur Heart J, 2019, 40 (48): 3913- 3920. |
| 13 | Dranitsaris G , Rayson D , Vincent M , et al. The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines[J]. Breast Cancer Res Treat, 2008, 107 (3): 443- 450. |
| 14 | Kim DY , Park MS , Youn JC , et al. Development and validation of a risk score model for predicting the cardiovascular outcomes after breast cancer therapy: The CHEMO-RADIAT score[J]. J Am Heart Assoc, 2021, 10 (16): e021931. |
| 15 | Rushton M , Johnson C , Dent S . Trastuzumab-induced cardiotoxi-city: Testing a clinical risk score in a real-world cardio-oncology population[J]. Curr Oncol, 2017, 24 (3): 176- 180. |
| 16 | Chang WT , Liu CF , Feng YH , et al. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline[J]. Arch Toxicol, 2022, 96 (10): 2731- 2737. |
| 17 | Zamorano JL , Lancellotti P , Rodriguez Munoz D , et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2017, 19 (1): 9- 42. |
| 18 | World Health Organization. Cardiovascular diseases (CVDs) [EB/OL]. (2021-6-11) [2023-12-14]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). |
| 19 | 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34 (3): 209- 220. |
| 20 | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35 (9): 833- 854. |
| 21 | Grundy SM , Stone NJ , Bailey AL , et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines[J]. Circulation, 2019, 139 (25): e1082- e1143. |
| 22 | Chien HC , Kao Yang YH , Bai JP . Trastuzumab-related cardio-toxic effects in Taiwanese women: A nationwide cohort study[J]. JAMA Oncol, 2016, 2 (10): 1317- 1325. |
| 23 | 内蒙古自治区统计局. 国民经济核算-地区生产总值-各盟市年度数据[EB/OL]. (2021-03-01) [2023-02-20]. http://tj.nmg.gov.cn/datashow/easyquery/easyquery.htm?cn=B0103. |
| 24 | Charlson ME , Pompei P , Ales KL , et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation[J]. J Chronic Dis, 1987, 40 (5): 373- 383. |
| 25 | 王俊峰, 章仲恒, 周支瑞, 等. 临床预测模型: 模型的验证[J]. 中国循证心血管医学杂志, 2019, 11 (2): 141- 144. |
| 26 | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37 (6): 553- 578. |
| 27 | Sutton AL, Felix AS, Wahl S, et al. Racial disparities in treatment-related cardiovascular toxicities amongst women with breast cancer: A scoping review [J/OL]. J Cancer Surviv, 2022, [2022-04-14]. https://doi.org/10.1007/s11764-022-01210-2. |
| 28 | 戴芮. 心脑血管疾病"协防共管"健康管理模式评价指标体系研究[D]. 江苏: 南京医科大学, 2021. |
| 29 | 林晓斐. 国务院办公厅印发《中国防治慢性病中长期规划(2017—2025年)》[J]. 中医药管理杂志, 2017, 25 (4): 14. |
| 30 | Battisti NML , Andres MS , Lee KA , et al. Incidence of cardio-toxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer[J]. Breast Cancer Res Treat, 2021, 188 (1): 149- 163. |
| 31 | D'Agostino RB Sr , Vasan RS , Pencina MJ , et al. General car-diovascular risk profile for use in primary care: the Framingham Heart Study[J]. Circulation, 2008, 117 (6): 743- 753. |
| 32 | Guha A , Fradley MG , Dent SF , et al. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: A SEER-Medicare analysis[J]. Eur Heart J, 2022, 43 (4): 300- 312. |
| 33 | Henry ML , Niu J , Zhang N , et al. Cardiotoxicity and cardiac monitoring among chemotherapy-treated breast cancer patients[J]. JACC Cardiovasc Imaging, 2018, 11 (8): 1084- 1093. |
| 34 | Boekel NB , Jacobse JN , Schaapveld M , et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer[J]. Br J Cancer, 2018, 119 (4): 408- 418. |
| 35 | Giordano G , Spagnuolo A , Olivieri N , et al. Cancer drug related cardiotoxicity during breast cancer treatment[J]. Expert Opin Drug Saf, 2016, 15 (8): 1063- 1074. |
| 36 | Zhang S , Liu XB , Bawa-Khalfe T , et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity[J]. Nat Med, 2012, 18 (11): 1639- 1642. |
| 37 | Higuchi S , Kabeya Y , Matsushita K , et al. Incidence and complications of perioperative atrial fibrillation after non-cardiac surgery for malignancy[J]. PLoS One, 2019, 14 (5): e0216239. |
| 38 | 内蒙古自治区医疗保障局. 关于执行国家基本医疗保险、工伤保险和生育保险药品目录(2019年版)的通知[EB/OL]. (2019-12-06) [2023-02-25]. https://ylbzj.nmg.gov.cn/zwgk/zfxxgk/fdzdgknr/bmwj/202103/t20210326_1313389.html. |
| 39 | Nusinovici S , Tham YC , Chak Yan MY , et al. Logistic regression was as good as machine learning for predicting major chronic diseases[J]. J Clin Epidemiol, 2020, 122, 56- 69. |
| 40 | James G , Witten D , Hastie T , et al. An introduction to statistical learning with application in R[M]. New York: Springer, 2013. |
| 41 | Hastie T , Tibshirani R , Friedman JH , et al. The elements of statistical learning: Data mining, inference and prediction[M]. New York: Springer, 2009. |
| 42 | International Agency for Research on Cancer. SURVCAN [EB/OL]. (2019-01-01) [2023-02-20]. https://gco.iarc.fr/survi-val/survcan/dataviz/table?mode=population&population_group=Asia&cancers=180&survival=5. |
| 43 | Nolan EK , Chen HY . A comparison of the Cox model to the Fine-Gray model for survival analyses of re-fracture rates[J]. Arch Osteoporos, 2020, 15 (1): 86. |
| 44 | Putter H , Fiocco M , Geskus RB . Tutorial in biostatistics: Competing risks and multi-state models[J]. Stat Med, 2007, 26 (11): 2389- 2430. |
| 45 | 惠春霞, 陈文婕, 钱永刚, 等. 内蒙古自治区居民超重/肥胖多水平分析[J]. 慢性病学杂志, 2020, 21 (3): 319- 322. |
| 46 | 王瑞琪, 杜茂林, 梁丹艳, 等. 内蒙古地区流动人口糖尿病影响因素的研究[J]. 现代预防医学, 2018, 45 (1): 155- 159. |
| 47 | Galovic M , D?hler N , Erdélyi-Canavese B , et al. Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): A multivariable prediction model development and validation study[J]. Lancet Neurol, 2018, 17 (2): 143- 152. |
/
| 〈 |
|
〉 |