收稿日期: 2023-06-30
网络出版日期: 2023-12-11
Role of collagen membrane in modified guided bone regeneration surgery using buccal punch flap approach: A retrospective and radiographical cohort study
Received date: 2023-06-30
Online published: 2023-12-11
目的: 在颊侧袋形瓣引导性骨再生手术基础上, 探讨放置可吸收胶原膜是否有利于维持术后牙槽嵴轮廓稳定。方法: 收集2019年6月至2023年6月因单颗后牙缺失采用种植体植入同期进行颊侧袋形瓣引导性骨再生手术患者, 根据骨粉表面是否覆盖胶原膜分为胶原膜覆盖组和无覆盖组。术前(T0)、术后即刻(T1)和术后3~7个月(T2)拍摄锥形束CT, 利用Mimics软件测量种植体光滑-粗糙交界面下不同水平(0、2、4和6 mm)处颊侧骨板厚度(thickness of the buccal bone plate, BBT, 分别表示为BBT-0、-2、-4、-6)。结果: 收集胶原膜覆盖组15例, 无胶原膜覆盖组14例, 共计29例患者进行统计分析。在T0、T1和T2三个时间点, 不同水平的BBT在两组间差异均无统计学意义(P>0.05)。T2时, BBT-0在胶原膜覆盖组和无覆盖组分别为(1.22±0.55) mm和(1.70±0.97) mm, 相应的BBT-2分别为(2.32±0.94) mm和(2.57±1.26) mm。T1~T2愈合阶段不同水平处颊侧骨板吸收的绝对值[(0.47±0.54)~(1.33±0.75) mm]和百分数[(10.04%±24.81%)~(48.43%±18.32%)], 以及T0~T2阶段颊侧骨板新骨形成厚度[(1.27±1.09)~(2.75±2.15) mm]在两组间差异均无统计学意义。结论: 颊侧袋形瓣引导骨再生手术无论是否使用胶原膜均可有效修复种植体颈部颊侧骨缺损。与无胶原膜覆盖相比, 胶原膜覆盖植骨材料不能提高术后牙槽嵴轮廓的稳定性。
关键词: 牙槽骨质丢失; 引导组织再生, 牙周; 骨再生; 锥束计算机体层摄影术; 胶原膜
段登辉 , WANGHom-Lay , 王恩博 . 可吸收胶原膜在颊侧袋形瓣引导性骨再生手术中的作用: 一项回顾性影像学队列研究[J]. 北京大学学报(医学版), 2023 , 55(6) : 1097 -1104 . DOI: 10.19723/j.issn.1671-167X.2023.06.022
Objective: To investigate whether the placement of absorbable collagen membrane increase the stability of alveolar ridge contour after guided bone regeneration (GBR) using buccal punch flap. Methods: From June 2019 to June 2023, patients who underwent GBR using buccal punch flap simultaneously with a single implant placement in posterior region (from first premolar to second molar) were divided into coverage group, in which particular bone graft was covered by collagen membrane and non-coverage group. Cone beam CT (CBCT) was taken before surgery (T0), immediately after surgery (T1), and 3-7 months after surgery (T2), and the thickness of the buccal bone plate at different levels (0, 2, 4, and 6 mm) below the smooth-rough interface of the implant (BBT-0, -2, -4, -6) was mea-sured after superimposition of CBCT models using Mimics software. Results: A total of 29 patients, including 15 patients in coverage group and 14 patients in non-coverage group, were investigated in this study. At T0, T1, and T2, there was no significant difference in BBT between the two groups (P>0.05). At T1, BBT-0 was (2.50±0.90) mm in the coverage group and (2.97±1.28) mm in the non-coverage group, with corresponding BBT-2 of (3.65±1.08) mm and (3.58±1.26) mm, respectively. At T2, BBT-0 was (1.22±0.55) mm in the coverage group and (1.70±0.97) mm in the non-coverage group, with corresponding BBT-2 of (2.32±0.94) mm and (2.57±1.26) mm, respectively. From T1 to T2, there were no statistically significant differences in the absolute values [(0.47±0.54)-(1.33±0.75) mm] and percentages [(10.04%±24.81%)-(48.43%±18.32%)] of BBT change between the two groups. The thickness of new bone formation in the buccal bone plate from T0 to T2 ranged from (1.27±1.09) mm to (2.75±2.15) mm with no statistical difference between the two groups at all levels. Conclusion: In the short term, the GBR using buccal punch flap with or without collagen membrane coverage can effectively repair the buccal implant bone defect. But collagen membrane coverage showed no additional benefit on alveolar ridge contour stability compared with non-membrane coverage.
| 1 | Hammerle CH , Jung RE , Feloutzis A . A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients[J]. J Clin Periodontol, 2002, 29 (Suppl 3): 226- 231. |
| 2 | Thoma DS , Bienz SP , Figuero E , et al. Efficacy of lateral bone augmentation performed simultaneously with dental implant placement: A systematic review and meta-analysis[J]. J Clin Perio-dontol, 2019, 46 (Suppl 21): 257- 276. |
| 3 | Jung RE , Fenner N , H?mmerle CH , et al. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years[J]. Clin Oral Implants Res, 2013, 24 (10): 1065- 1073. |
| 4 | Benic GI , Thoma DS , Jung RE , et al. Guided bone regeneration with particulate vs. block xenogenic bone substitutes: A pilot cone beam computed tomographic investigation[J]. Clin Oral Implants Res, 2017, 28 (11): e262- e270. |
| 5 | Fu JH , Oh TJ , Benavides E , et al. A randomized clinical trial evaluating the efficacy of the sandwich bone augmentation technique in increasing buccal bone thickness during implant placement surgery: Ⅰ. Clinical and radiographic parameters[J]. Clin Oral Implants Res, 2014, 25 (4): 458- 467. |
| 6 | Ye GH , Duan DH , Wang EB . Ridge volume stability of maxillary anterior implants placed with simultaneous lateral guided bone regeneration during healing: A radiographic analysis[J]. Chin J Dent Res, 2021, 24 (4): 251- 256. |
| 7 | Wang HL , Boyapati L . "PASS" principles for predictable bone regeneration[J]. Implant Dent, 2006, 15 (1): 8- 17. |
| 8 | César Neto JB , Cavalcanti MC , Sapata VM , et al. The positive effect of tenting screws for primary horizontal guided bone regeneration: A retrospective study based on cone-beam computed tomography data[J]. Clin Oral Implants Res, 2020, 31 (9): 846- 855. |
| 9 | Farias D , Caceres F , Sanz A , et al. Horizontal bone augmentation in the posterior atrophic mandible and dental implant stability using the tenting screw technique[J]. Int J Periodontics Restorative Dent, 2021, 41 (4): e147- e155. |
| 10 | Duan DH , Wang HL , Xiao WC , et al. Bone regeneration using titanium plate stabilization for the treatment of peri-implant bone defects: A retrospective radiologic pilot study[J]. Clin Implant Dent Relat Res, 2022, 24 (6): 792- 800. |
| 11 | Ciocca L , Lizio G , Baldissara P , et al. Prosthetically CAD-CAM-guided bone augmentation of atrophic jaws using customized tita-nium mesh: Preliminary results of an open prospective study[J]. J Oral Implantol, 2018, 44 (2): 131- 137. |
| 12 | Her S , Kang T , Fien MJ . Titanium mesh as an alternative to a membrane for ridge augmentation[J]. J Oral Maxillofac Surg, 2012, 70 (4): 803- 810. |
| 13 | Lee SR , Jang TS , Seo CS , et al. Hard tissue volume stability effect beyond the bony envelope of a three-dimensional preformed titanium mesh with two different collagen barrier membranes on peri-implant dehiscence defects in the anterior maxilla: A rando-mized clinical trial[J]. Materials (Basel), 2021, 14 (19): 5618. |
| 14 | Sumida T , Otawa N , Kamata YU , et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh[J]. J Craniomaxillofac Surg, 2015, 43 (10): 2183- 2188. |
| 15 | Lin Z , Fateh A , Salem DM , et al. Periosteum: Biology and applications in craniofacial bone regeneration[J]. J Dent Res, 2014, 93 (2): 109- 116. |
| 16 | Duan DH , Wang HL , Wang EB . Effect of intact periosteum on alveolar ridge contour stability after horizontal guided bone regene-ration in posterior region: A retrospective and radiographical cohort study[J]. Chin J Dent Res, 2023, 26 (4): 229- 236. |
| 17 | Deng C , Yi Z , Xiong C , et al. Using the intact periosteum for horizontal bone augmentation of peri-implant defects: A retrospective cohort study[J]. Br J Oral Maxillofac Surg, 2022, 60 (10): 1325- 1331. |
| 18 | Dahlin C , Linde A , Gottlow J , et al. Healing of bone defects by guided tissue regeneration[J]. Plast Reconstr Surg, 1988, 81 (5): 672- 676. |
| 19 | Dahlin C , Sennerby L , Lekholm U , et al. Generation of new bone around titanium implants using a membrane technique: An experimental study in rabbits[J]. Int J Oral Maxillofac Implants, 1989, 4 (1): 19- 25. |
| 20 | Becker W , Becker BE , Handlesman M , et al. Bone formation at dehisced dental implant sites treated with implant augmentation material: A pilot study in dogs[J]. Int J Periodontics Restorative Dent, 1990, 10 (2): 92- 101. |
| 21 | Louis PJ , Gutta R , Said-Al-Naief N , et al. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement[J]. J Oral Maxillofac Surg, 2008, 66 (2): 235- 245. |
| 22 | Atef M , Tarek A , Shaheen M , et al. Horizontal ridge augmentation using native collagen membrane vs titanium mesh in atrophic maxillary ridges: Randomized clinical trial[J]. Clin Implant Dent Relat Res, 2020, 22 (2): 156- 166. |
| 23 | Urban IA , Saleh MHA , Ravidà A , et al. Vertical bone augmentation utilizing a titanium-reinforced PTFE mesh: A multi-variate analysis of influencing factors[J]. Clin Oral Implants Res, 2021, 32 (7): 828- 839. |
| 24 | Benic GI , Bienz SP , Song YW , et al. Randomized controlled clinical trial comparing guided bone regeneration of peri-implant defects with soft-type block versus particulate bone substitutes: Six-month results of hard-tissue changes[J]. J Clin Periodontol, 2022, 49 (5): 480- 495. |
| 25 | Park SH , Lee KW , Oh TJ , et al. Effect of absorbable membranes on sandwich bone augmentation[J]. Clin Oral Implants Res, 2008, 19 (1): 32- 41. |
| 26 | Spray JR , Black CG , Morris HF , et al. The influence of bone thickness on facial marginal bone response: Stage 1 placement through stage 2 uncovering[J]. Ann Periodontol, 2000, 5 (1): 119- 128. |
| 27 | Botticelli D , Berglundh T , Lindhe J . Hard-tissue alterations following immediate implant placement in extraction sites[J]. J Clin Periodontol, 2004, 31 (10): 820- 828. |
| 28 | Severi M , Simonelli A , Farina R , et al. Effect of lateral bone augmentation procedures in correcting peri-implant bone dehiscence and fenestration defects: A systematic review and network meta-analysis[J]. Clin Implant Dent Relat Res, 2022, 24 (2): 251- 264. |
| 29 | Park JC , Kim CS , Choi SH , et al. Flap extension attained by vertical and periosteal-releasing incisions: A prospective cohort study[J]. Clin Oral Implants Res, 2012, 23 (8): 993- 998. |
| 30 | Monje A , Pons R , Vilarrasa J , et al. Significance of barrier membrane on the reconstructive therapy of peri-implantitis: A rando-mized controlled trial[J]. J Periodontol, 2023, 94 (3): 323- 335. |
/
| 〈 |
|
〉 |