收稿日期: 2021-06-11
网络出版日期: 2024-07-23
基金资助
国家自然科学基金(30872168);国家自然科学基金(81473044)
Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors
Received date: 2021-06-11
Online published: 2024-07-23
Supported by
the National Natural Science Foundation of China(30872168);the National Natural Science Foundation of China(81473044)
目的: 探索血浆中脂质代谢分子与颈动脉粥样硬化斑块、传统心血管危险因素的关系及可能的膳食相关因素。方法: 从参加2012年“亚临床动脉粥样硬化队列10年随访研究”的北京市石景山区1 312名社区人群中,按照入排标准(年龄 < 70岁、无临床心血管病及其他疾病等)筛选出85名有2个以上颈动脉软斑块或混合斑块者,以及相匹配的89名无斑块对照者;然后从中各随机抽取10名分别作为病例组和对照组。颈动脉斑块采用GE Vivid i超声仪(8L探头)确定。采用高效液相色谱-质谱联用法对脂质代谢分子进行检测,检测指标包括113种脂质代谢分子。传统心血管危险因素使用统一的标准问卷进行采集,膳食相关因素采用膳食使用频率和重量问卷进行采集。采用Wilcoxin秩和检验分析病例组和对照组脂质代谢分子的差异,在对照组中,采用Spearman相关法描述有统计学意义的脂质代谢分子与传统心血管危险因素、膳食因素的相关关系。结果: 在113种脂质代谢分子中检测出的53种脂质分子中,C24:0鞘磷脂,C22:0、C24:0神经酰胺,C18:0磷脂酰乙醇胺,C18:2 (Cis) 磷脂酰胆碱,C18:0磷脂酰胆碱等在颈动脉粥样硬化斑块病例组显著高于无斑块对照组。对照组相关分析发现,C24:0鞘磷脂与低密度脂蛋白胆固醇呈显著正相关(r=0.636,P < 0.05),C18:2 (Cis) 磷脂酰胆碱与收缩压呈显著正相关(r=0.733,P < 0.05),C18:0磷脂酰乙醇胺与高敏C反应蛋白呈显著正相关(r=0.782,P < 0.01),C22:0、C24:0神经酰胺及C18:0磷脂酰乙醇胺与蔬菜摄入量呈显著负相关(r=-0.679,P < 0.05;r=-0.711,P < 0.05;r=-0.808,P < 0.01),C24:0神经酰胺与豆类食品摄入量呈显著负相关(r=-0.736,P < 0.05)。结论: 血浆C24:0鞘磷脂、C22:0和C24:0神经酰胺、C18:0磷脂酰乙醇胺、C18:2和C18:0磷脂酰胆碱等脂质代谢分子升高可能是人类动脉粥样硬化斑块的新危险因素,这些分子可能与血脂、血压或炎症水平及蔬菜、豆制品摄入有关,但关联的性质需要在更大样本人群中验证。
和静 , 房中则 , 杨颖 , 刘静 , 马文瑶 , 霍勇 , 高炜 , 武阳丰 , 谢高强 . 血浆中脂质代谢分子与颈动脉粥样硬化斑块、传统心血管危险因素及膳食因素的关系[J]. 北京大学学报(医学版), 2024 , 56(4) : 722 -728 . DOI: 10.19723/j.issn.1671-167X.2024.04.028
Objective: To explore the relationship between lipid metabolism molecules in plasma and carotid atherosclerotic plaques, traditional cardiovascular risk factors and possible dietary related factors. Methods: Firstly, among 1 312 community people from those who participated in a 10-year follow-up study of subclinical atherosclerosis cohort in Shijingshan District, Beijing, 85 individuals with 2 or more carotid soft plaques or mixed plaques and 89 healthy individuals without plaques were selected according to the inclusive and the exclusive criteria (< 70 years, not having clinical cardiovascular disease and other diseases, etc.). Secondly, 10 cases and 10 controls were randomly selected in the above 85 and 89 individuals respectively. Carotid plaques were detected using GE Vivid i Ultrasound Machine with 8L detector. Lipid metabolism molecules were detected by high performance liquid chromatography-mass spectrometry. The detection indexes included 113 lipid metabolism molecules. Traditional cardiovascular risk factors were collected by unified standard questionnaires, and dietary related factors were collected by main dietary frequency and weight scale. The difference of lipid metabolism molecules between the case group and the control group was analyzed by Wilcoxin rank test. In the control group, the Spearman correlation method was used to analyze the correlation between statistically significant lipid metabolism molecules and traditional cardiovascular risk factors and dietary factors. Results: Among the 113 lipid metabolism molecules, 53 lipid metabolism molecules were detected. C24:0 sphingomyelin (SM), C22:0/ C24:0 ceramide molecules, C18:0 phosphoethanolamine (PE) molecules, and C18:0/C18:2 (Cis) phosphatidylcholine (PC) were significantly higher in the carotid atherosclerotic plaque group than in the control group. The correlation analysis showed that C24:0 SM was significantly positively correlated with low density lipoprotein cholesterol (LDL-C, r=0.636, P < 0.05), C18:2 (Cis) PC (DLPC) was significantly positively correlated with systolic pressure (r=0.733, P < 0.05), C18:0 PE was significantly positively correlated with high sensitivity C-response protein (r=0.782, P < 0.01), C22:0, C24:0 ceramide and C18:0 PE were negatively correlated with vegetable intake (r=-0.679, P < 0.05;r=-0.711, P < 0.05;r=-0.808, P < 0.01), C24:0 ceramide was also negatively correlated with beans food intake (r=-0.736, P < 0.05) in the control group. Conclusions: The increase of plasma C24:0 SM, C22:0, C24:0 ceramide, C18:0 PE, C18:2 (Cis) PC (DLPC), C18:0 PC (DSPC) may be new risk factors for human atherosclerotic plaques. These molecules may be related to blood lipid, blood pressure or inflammatory level and the intake of vegetables and soy products, but the nature of the association needs to be verified in a larger sample population.
| 1 | Alizargar J , Bai CH . Factors associated with carotid Intima media thickness and carotid plaque score in community-dwelling and non-diabetic individuals[J]. BMC Cardiovasc Disord, 2018, 18 (1): 21. |
| 2 | Gon?alves I , Edsfeldt A , Colhoun HM , et al. Association between renin and atherosclerotic burden in subjects with and without type 2 diabetes[J]. BMC Cardiovasc Disord, 2016, 16 (1): 171. |
| 3 | Lou Y , Li B , Su L , et al. Association between body mass index and presence of carotid plaque among low-income adults aged 45 years and older: A population-based cross-sectional study in rural China[J]. Oncotarget, 2017, 8 (46): 81261- 81272. |
| 4 | Yang D , Iyer S , Gardener H , et al. Cigarette smoking and carotid plaque echodensity in the Northern Manhattan study[J]. Cerebrovasc Dis, 2015, 40 (3/4): 136- 143. |
| 5 | Arnold N , Koenig W . Atherosclerosis as an inflammatory disease-pathophysiology, clinical relevance and therapeutic implications[J]. Dtsch Med Wochenschr, 2019, 144 (5): 315- 321. |
| 6 | 谢高强, 于晖, 陈敬洲, 等. 基因变异及心血管危险因素与单核细胞分泌白细胞介素6和10的关系[J]. 北京大学学报(医学版), 2014, 46 (4): 589- 595. |
| 7 | Xie G , Myint PK , Zaman MJ , et al. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population[J]. PLoS One, 2013, 8 (9): e74126. |
| 8 | Xie G , Myint PK , Zhao L , et al. Relationship between-592A/C polymorphism of interleukin-10 (IL-10) gene and risk of early carotid atherosclerosis[J]. Int J Cardiol, 2010, 143 (1): 102- 104. |
| 9 | Paapstel K , Kals J , Eha J , et al. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis[J]. Nutr Metab Cardiovasc Dis, 2018, 28 (1): 44- 52. |
| 10 | Pechlaner R , Kiechl S , Mayr M . Potential and caveats of lipidomics for cardiovascular disease[J]. Circulation, 2016, 134 (21): 1651- 1654. |
| 11 | 罗杰斯, 谢高强, 于洋, 等. 中老年人群颈动脉内中膜厚度分布特征及相关因素分析[J]. 中国循环杂志, 2013, 28 (4): 278- 281. |
| 12 | Pavoine C , Pecker F . Sphingomyelinases: Their regulation and roles in cardiovascular pathophysiology[J]. Cardiovasc Res, 2009, 82 (2): 175- 183. |
| 13 | Kasumov T , Li L , Li M , et al. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis[J]. PLoS One, 2015, 10 (5): e0126910. |
| 14 | Colombaioni L , Garcia-Gil M . Sphingolipid metabolites in neural signalling and function[J]. Brain Res Brain Res Rev, 2004, 46 (3): 328- 355. |
| 15 | Kolak M , Westerbacka J , Velagapudi VR , et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity[J]. Diabetes, 2007, 56 (8): 1960- 1968. |
| 16 | Zhao W , Wang X , Deik AA , et al. Elevated plasma ceramides are associated with antiretroviral therapy use and progression of carotid artery atherosclerosis in HIV infection[J]. Circulation, 2019, 139 (17): 2003- 2011. |
| 17 | Yin W , Li F , Tan X , et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk[J]. Am J hypertens, 2020, 34 (11): 1209- 1216. |
| 18 | Jiang XC , Liu J . Sphingolipid metabolism and atherosclerosis[J]. Handb Exp Pharmacol, 2013, (216): 133- 146. |
| 19 | van der Veen JN , Kennelly JP , Wan S , et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease[J]. Biochim Biophys Acta Biomembr, 2017, 1859 (9 Pt B): 1558- 1572. |
| 20 | Vettraino C , Peracchi A , Donini S , et al. Structural characterization of human O-phosphoethanolamine phospho-lyase[J]. Acta Crystallogr F Struct Biol Commun, 2020, 76 (Pt 4): 160- 167. |
| 21 | Singh SK , Suresh MV , Prayther DC , et al. C-reactive protein-bound enzymatically modified low-density lipoprotein does not transform macrophages into foam cells[J]. J Immunol, 2008, 180 (6): 4316- 4322. |
| 22 | Floegel A , Kühn T , Sookthai D , et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts[J]. Eur J Epidemiol, 2018, 33 (1): 55- 66. |
| 23 | Park J , Jung TW , Chung YH , et al. 1, 2-Dilinoleoyl-Sn-glycero-3-phosphocholine increases insulin sensitivity in palmitate-treated myotubes and induces lipolysis in adipocytes[J]. Biochem Biophys Res Commun, 2020, 533 (1): 162- 167. |
| 24 | Yang L , Wang L , Deng Y , et al. Serum lipids profiling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy[J]. Lipids Health Dis, 2020, 19 (1): 89. |
| 25 | Hilvo M , Simolin H , Metso J , et al. PCSK9 inhibition alters the lipidome of plasma and lipoprotein fractions[J]. Atherosclerosis, 2018, 269, 159- 165. |
/
| 〈 |
|
〉 |