技术方法

关节镜下组织工程支架修复软骨损伤

  • 刘振龙 ,
  • 侯振宸 ,
  • 胡晓青 ,
  • 任爽 ,
  • 郭秦炜 ,
  • 徐雁 ,
  • 龚熹 ,
  • 敖英芳
展开
  • 北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京 100191
第一联系人:

* These authors contributed equaly to this work

收稿日期: 2021-06-28

  网络出版日期: 2025-04-12

基金资助

国家自然科学基金(31900961);北京大学第三医院人才孵育基金(青年骨干,BYSYFY2021038);北京大学第三医院临床重点项目人才项目B类(BYSYZD2019024)

版权

北京大学学报(医学版)编辑部, 2025, 版权所有,未经授权,不得转载。

Arthroscopic tissue engineering scaffold repair for cartilage injuries

  • Zhenlong LIU ,
  • Zhenchen HOU ,
  • Xiaoqing HU ,
  • Shuang REN ,
  • Qinwei GUO ,
  • Yan XU ,
  • Xi GONG ,
  • Yingfang AO
Expand
  • Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
GONG Xi, e-mail, gongxi518@163.com
AO Yingfang, e-mail, aoyingfang@163.com

Received date: 2021-06-28

  Online published: 2025-04-12

Supported by

the National Natural Science Foundation of China(31900961);eking University Third Hospital Talent Incubation Fund(青年骨干,BYSYFY2021038);Peking University Third Hospital Clinical Key Project Talent Program(BYSYZD2019024)

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

目的: 总结北京大学第三医院运动医学团队修复软骨损伤的手术技术经验,提出了一种关节镜下组织工程支架修复软骨损伤的手术技术,旨在规范化相关手术操作。方法: 阐述关节镜下组织工程支架修复软骨损伤的手术操作技术及技巧,介绍关节镜下脱钙皮质-松质骨支架完整的植入技术和手术流程,患者采取仰卧位,在麻醉完毕后建立关节镜手术入路,并在关节镜下对受损的部位进行探查;确认损伤部位的面积和部位后,对受损破碎的软骨进行清理,同时清理软骨边缘,确保切面平整、边缘稳定;在软骨损伤区域行微骨折术,之后再对损伤部位的大小进行测量;依据镜下测量结果对组织工程支架进行人工修剪,再通过套筒将支架直接植入;使用蜂窝状固定器植入可吸收钉固定支架;支架安装完毕后,反复屈伸膝关节10~20次,以确保稳定性和活动度;撤出关节镜并关闭创口。结果: 从形态学和生物力学方面,脱钙皮质-松质骨支架都具有其他人工合成材料无法比拟的优势,支架的松质骨部分为细胞提供三维多孔生长空间,皮质骨部分则提供了必要的力学强度。手术采取全程关节镜下操作,把对患者的侵入性损伤最小化,同时使用可吸收钉进行固定,确保支架稳定,本技术可有效改善软骨损伤患者预后,对软骨损伤患者的关节镜下组织工程支架手术操作起到了规范作用。结论: 通过关节镜下组织工程支架修复技术,可以成功对损伤的软骨进行修复,短期内改善症状,并提供较为理想的长期预后效果;对关节镜下组织工程支架的手术操作进行详解,以期对临床实践起到指导意义。

本文引用格式

刘振龙 , 侯振宸 , 胡晓青 , 任爽 , 郭秦炜 , 徐雁 , 龚熹 , 敖英芳 . 关节镜下组织工程支架修复软骨损伤[J]. 北京大学学报(医学版), 2025 , 57(2) : 384 -387 . DOI: 10.19723/j.issn.1671-167X.2025.02.025

Abstract

Objective: To standardize the operative procedure for tissue-engineered cartilage repair, by demonstrating surgical technique of arthroscopic implantation of decalcified cortex-cancellous bone scaffolds, and summarizing the surgical experience of the sports medicine department team at Peking University Third Hospital. Methods: This article elaborates on surgical techniques and skills, focusing on the unabridged implantation technology and surgical procedure of decalcified cortex-cancellous bone scaffolds under arthroscopy: First, the patient was placed in the supine position. After anesthesia had been established, the surgeon established an arthroscope and explored the damaged area under the scope. After confirming the size and location of the injury site, the surgeon cleaned the damaged cartilage, and also trimmed the edges of the cartilage to ensure that the cut surface was smooth and stable. the surgeon performed the micro-fracture surgery in the area of cartilage injury, and then measured the size of the injured area under the scope. Next, the surgeon manually trimmed the tissue-engineered scaffold based on the measurements taken under the arthroscope, and then directly implanted the scaffold using a sleeve. A honeycomb-shaped fixator was used to implant absorbable nails to fix the scaffold. After the scaffold was installed, the knee was repeatedly flexed and extended for 10-20 times to ensure stability and range of motion. Finally, the arthroscope was withdrawn and the wound was closed. Results: Decalcified cortex-cancellous bone scaffolds possessed unparalleled advantages over synthetic materials in terms of morphology and biomechanics. The cancellous bone part of the scaffold provided a three-dimensional, porous space for cell growth, while the cortical bone part offered the necessary mechanical strength. The surgery was performed entirely under arthroscopy to minimize invasiveness to the patient. Absorbable pins were used for fixation to ensure the stability of the scaffold. This technique could effectively improve the prognosis of the patients with cartilage injuries and standardized the surgical procedures for arthroscopic tissue-engineered scaffold operations in the patients with cartilage damage. Conclusion: With the standard arthroscopic tissue-engineered scaffold repair technique, it is possible to successfully repair damaged cartilage, alleviate symptoms in the short term, and provide a more ideal long-term prognosis. The author and their team explain the surgical procedures for tissue-engineered scaffolds under arthroscopy, with the aim of guiding future clinical practice.

参考文献

1 Schneider S , Kaiser R , Uterhark B , et al. Autologous surface repair: Autologous matrix-induced chondrogenesis and minced cartilage implantation[J]. JCJP, 2023, 3 (1): 100111.
2 Fossum V , Hansen AK , Wilsgaard T , et al. Collagen-covered autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis: A randomized trial comparing 2 methods for repair of cartilage defects of the knee[J]. Orthop J Sports Med, 2019, 7 (9): 2325967119868212.
3 Krych AJ , Saris DBF , Stuart MJ , et al. Cartilage Injury in the Knee: Assessment and treatment options[J]. J Am Acad Orthop Surg, 2020, 28 (22): 914- 922.
4 Makris EA , Gomoll AH , Malizos KN , et al. Repair and tissue engineering techniques for articular cartilage[J]. Nat Rev Rheumatol, 2015, 11 (1): 21- 34.
5 Kwon H , Brown WE , Lee CA , et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair[J]. Nat Rev Rheumatol, 2019, 15 (9): 550- 570.
6 Liu Z , Hu X , Man Z , et al. A novel rabbit model of early osteoarthritis exhibits gradual cartilage degeneration after medial collateral ligament transection outside the joint capsule[J]. Sci Rep, 2016, 6, 34423.
7 JareckI J, Was'ko MK, Widuchowski W, et al. Knee cartilage lesion management-current trends in clinical practice[J/OL]. J Clin Med, 2023, 12(20)[2025-01-01]. https://doi.org/10.3390/jcm12206434.
8 Kalairaj MS , Pradhan R , Saleem W , et al. Intra-articular injectable biomaterials for cartilage repair and regeneration[J]. Adv Healthc Mater, 2024, 13 (17): e2303794.
9 Lories RJ , Luyten FP . The bone-cartilage unit in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7 (1): 43- 49.
10 Redondo ML , Beer AJ , Yanke AB . Cartilage restoration: Microfracture and osteochondral autograft transplantation[J]. J Knee Surg, 2018, 31 (3): 231- 238.
11 Gikas PD , Bayliss L , Bentley G , et al. An overview of autologous chondrocyte implantation[J]. J Bone Joint Surg Br, 2009, 91 (8): 997- 1006.
12 Migliorini F , Eschweiler J , G?tze C , et al. Matrix-induced autologous chondrocyte implantation (mACI) versus autologous matrix-induced chondrogenesis (AMIC) for chondral defects of the knee: A systematic review[J]. Br Med Bull, 2022, 141 (1): 47- 59.
13 B?kowski P , Grzywacz K , Prusińska A , et al. Autologous matrix-induced chondrogenesis (AMIC) for focal chondral lesions of the knee: A 2-year follow-up of clinical, proprioceptive, and isoki-netic evaluation[J]. J Funct Biomater, 2022, 13 (4): 277.
14 Vanlauwe J , Saris DB , Victor J , et al. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters[J]. Am J Sports Med, 2011, 39 (12): 2566- 2574.
15 Benthien JP , Behrens P . The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): Method description and recent developments[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19 (8): 1316- 1319.
16 Skodacek D , Brandau S , Deutschle T , et al. Growth factors and scaffold composition influence properties of tissue engineered human septal cartilage implants in a murine model[J]. Int J Immunopathol Pharmacol, 2008, 21 (4): 807- 816.
17 Zhang X , Zheng Z , Liu P , et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair[J]. Biomaterials, 2008, 29 (35): 4616- 4629.
18 Huang H , Zhang X , Hu X , et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration[J]. Biomaterials, 2014, 35 (36): 9608- 9619.
19 Liu Z, Hou Z, Pan T, et al. Tissue engineered cartilage repair using small-incision implantation of decalcified corticocancellous bone scaffold[J/OL]. Arthrosc Tech, 2024: 103346(2024-12-10)[2025-01-01]. https://doi.org/10.1016/j.eats.2024.103346.
20 Liu Z, Ye F, Ao Y, et al. Absorbable nail fixation of biologic membrane for treatment of cartilage defects by matrix-induced autologous chondrocyte implantation[J/OL]. Arthrosc Tech, 2024, 13(7): 102984[2025-01-01]. https://doi.org/10.1016/j.eats.2024.102984.
文章导航

/