Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 188-194. doi: 10.19723/j.issn.1671-167X.2021.01.028

Previous Articles     Next Articles

Impact of oliguria during lung surgery on postoperative acute kidney injury

MENG Zhao-ting,MU Dong-liang()   

  1. Department of Anesthesiology, Peking University First Hospital, Beijing 100034, China
  • Received:2020-04-13 Online:2021-02-18 Published:2021-02-07
  • Contact: Dong-liang MU E-mail:mudongliang@icloud.com
  • Supported by:
    National Key Pesearch and Development Program of China(2018YFC2001800)

Abstract:

Objective: To explore the influence of intraoperative urine volume on postoperative acute kidney injury (AKI) and the independent risk factors of AKI.Methods: This was a retrospective cohort study recruiting patients who received selective pulmonary resection under general anesthesia in Peking University First Hospital from July, 2017 to June, 2019. The patients were divided into the AKI group and the control group according to whether they developed postoperative AKI or not. Firstly, univariate analysis was used to analyze the relationship between perioperative variables and postoperative AKI. Secondly, receiver operating characteristic (ROC) curve was used to explore the predictive value of intraoperative urine output for postoperative AKI. The nearest four cutoff values [with the interval of 0.1 mL/(kg·h)] at maximum Youden index were used as cutoff values of oliguria. Then univariate analysis was used to explore the relationship between oliguria defined by these four cutoff values and the risk of AKI. And the cutoff value with maximum OR was chosen as the threshold of oliguria in this study. Lastly, the variables with P<0.10 in the univariate analysis were selected for inclusion in a multivariate Logistic model to analyze the independent predictors of postoperative AKI.Results: A total of 1 393 patients were enrolled in the study. The incidence of postoperative AKI was 2.2%. ROC curve analysis showed that the area under curve (AUC) of intraoperative urine volume used for predicting postoperative AKI was 0.636 (P=0.009), and the cutoff value of oliguria was 0.785 mL/(kg·h) when Youden index was maximum (Youden index =0.234, sensitivity =48.4%, specificity =75.0%). Furthermore, 0.7, 0.8, 0.9, 1.0 mL/(kg·h) and the traditional cutoff value of 0.5 mL/(kg·h) were used to analyze the influence of oliguria on postoperative AKI. Univariate analysis showed that, when 0.8 mL/(kg·h) was selected as the threshold of oliguria, the patients with oliguria had the most significantly increased risk of AKI (AKI group 48.4% vs. control group 25.3%, OR=2.774, 95%CI 1.357-5.671, P=0.004). Multivariate regression analysis showed that intraoperative urine output <0.8 mL/(kg·h) was one of the independent risk factors of postoperative AKI (OR=2.698,95%CI 1.260-5.778, P=0.011). The other two were preoperative hemoglobin ≤120.0 g/L (OR=3.605, 95%CI 1.545-8.412, P=0.003) and preoperative estimated glomerular filtration rate <30 mL/(min·1.73 m2) (OR=11.009, 95%CI 1.813-66.843, P=0.009). Conclusion: Oliguria is an independent risk fact or of postoperative AKI after pulmonary resection, and urine volume <0.8 mL/(kg·h) is a possible screening criterium.

Key words: Pulmonary surgical procedures, Oliguria, Acute kidney injury, Urine output, Risk factors

CLC Number: 

  • R614

Figure 1

Flowchart of study AKI, acute kidney disease. a, the estimated glomerular filtration rate (eGFR) was calculated using the chronic kidney disease epidemiology collaboration creatinine equation[14]. End-stage renal disease was defined as eGFR<15 mL/(min·1.73 m2) or receiving hemodialysis. b, furosemide or mannitol."

Table 1

Preoperative baseline data of the two groups"

Items All patients (n=1 393) Control group (n=1 362) AKI group (n=31) P
Male, n(%) 700 (50.3) 684 (50.2) 16 (51.6) 0.878
Age/years, x-±s 59.8±10.6 59.8±10.6 58.8±10.7 0.616
BMI/(kg/m2), x-±s 24.5±3.4 24.5±3.4 25.2±3.2 0.247
Pulmonary malignant tumor, n(%) 1 213 (87.1) 1 184 (86.9) 29 (93.5) 0.214
Preoperative comorbidity, n(%)
Stroke 129 (9.3) 127 (9.3) 2 (6.5) 0.441
Hypertension 548 (39.3) 534 (39.2) 14 (45.2) 0.502
Coronary heart disease 159 (11.4) 155 (11.4) 4 (12.9) 0.480
Diabetes mellitus 247 (17.7) 237 (17.4) 10 (32.3) 0.032
History of nephrectomya 12 (0.9) 11 (0.8) 1 (3.2) 0.237
History of medication, n(%)
Aspirin 123 (8.8) 121 (8.9) 2 (6.5) 0.474
ACEI 45 (3.2) 44 (3.2) 1 (3.2) 0.735
ARB 191 (13.7) 184 (13.5) 7 (22.6) 0.120
Diuretics 47 (3.4) 46 (3.4) 1 (3.2) 0.719
Preoperative laboratory examination
Hb/(g/L), x-±s 135.5±14.0 135.7±13.9 126.7±16.4 <0.001
Hb≤120 g/L, n(%) 183 (13.1) 171 (12.6) 12 (38.7) <0.001
Alb/(g/L), M (IQR) 40.0 (38.0-42.6) 40.0 (38.0-42.6) 39.3 (36.9-41.3) 0.060
eGFR<30 mL/(min·1.73 m2), n(%) 7 (0.5) 4 (0.3) 3 (9.7) <0.001
Dehydration indexb>20, n(%) 541 (38.8) 527 (38.7) 14 (45.2) 0.465
Other examinations, n(%)
SBPc>140 mmHg 392 (28.1) 382 (28.0) 10 (32.3) 0.606
DBPc>90 mmHg 81 (5.8) 80 (5.9) 1 (3.2) 0.452
ASA physical status Ⅲ-Ⅳ, n(%) 196 (14.1) 186 (13.7) 10 (32.3) 0.007

Table 2

Perioperative data of the two groups"

Items All patients (n=1 393) Control group (n=1362) AKI group (n=31) P
Lung surgery type, n(%) 0.392
Partial lobectomy 347 (24.9) 340 (25.0) 7 (22.6)
Lobectomy or bilobectomy 1 016 (72.9) 994 (73.0) 22 (71.0)
Pneumonectomy 30 (2.2) 28 (2.1) 2 (6.5)
Total intravenous anesthesia, n(%) 299 (21.5) 295 (21.7) 4 (12.9) 0.240
Nerve block, n(%) 0.883
None 317 (22.8) 311 (22.8) 6 (19.4)
Paravertebral block 1 000 (71.8) 977 (71.7) 23 (74.2)
Epidural block 76 (5.5) 74 (5.4) 2 (6.5)
Intraoperative medication, n(%)
Dexmedetomidine 729 (52.3) 712 (52.3) 17 (54.8) 0.778
Ephedrine 593 (42.6) 580 (42.6) 13 (41.9) 0.942
Norepinephrine 298 (21.4) 291 (21.4) 7 (22.6) 0.870
Intraoperative fluid balance
Calculated infusiona/[mL/(kg·h)], M(IQR) 4.9 (3.8-6.2) 4.9 (3.9-6.2) 4.0 (3.3-5.2) 0.083
Artificial colloid, n(%) 288 (20.7) 281 (20.6) 7 (22.6) 0.791
Allogeneic erythrocytes, n(%) 33 (2.4) 32 (2.3) 1 (3.2) 0.528
Allogenic plasma, n(%) 30 (2.2) 29 (2.1) 1 (3.2) 0.495
Blood loss/mL, M(IQR) 50 (0-100) 50 (0-100) 50 (0-200) 0.854
Calculated urine outputb/[mL/(kg·h)], M(IQR) 1.2 (0.8-1.9) 1.2 (0.8-1.9) 0.9 (0.6-1.4) 0.009
Intraoperative monitoring, n(%)
Low SBPc 1 250 (89.7) 1 223 (89.8) 27 (87.1) 0.551
Low SBPc lasting more than 30 min 953 (68.4) 931 (68.4) 22 (71.0) 0.757
SpO2<90% 234 (16.8) 228 (16.7) 6 (19.4) 0.700
SpO2<90% lasting more than 10 min 106 (7.6) 103 (7.6) 3 (9.7) 0.424
Anesthesia duration/min, x-±s 292.4±90.5 292.1±90.4 305.4±96.3 0.420
Surgery duration/min, x-±s 197.9±84.6 197.8±84.5 205.3±88.2 0.626

Figure 2

The ROC of intraoperative calculated urine output for prediction of postoperative AKI AUC, area under curve; ROC, receiver operating characteristic curve; AKI, acute kidney injury."

Table 3

Predictive value of intraoperative urine volume for postoperative AKI"

Items All patients (n=1 393) Control group (n=1 362) AKI group (n=31) OR(95%CI) P
Calculated urine outputa, n(%)
<0.5 mL/(kg·h) 126 (9.0) 122 (9.0) 4 (12.9) 1.506 (0.518-4.374) 0.306
<0.7 mL/(kg·h) 261 (18.7) 250 (18.4) 11 (35.5) 2.446 (1.157-5.171) 0.016
<0.8 mL/(kg·h) 359 (25.8) 344 (25.3) 15 (48.4) 2.774 (1.357-5.671) 0.004
<0.9 mL/(kg·h) 444 (31.9) 428 (31.4) 16 (51.6) 2.328 (1.140-4.752) 0.017
<1.0 mL/(kg·h) 520 (37.3) 503 (36.9) 17 (54.8) 2.074 (1.014-4.243) 0.042

Table 4

Independent risk factors of postoperative AKI"

Items Univariate analysis Multivariate analysis
Estimated difference (95%CI) P OR(95%CI) P
Diabetes mellitus OR=2.260 (1.051-4.862) 0.037 - 0.353
Preoperative Hb≤120.0 g/L OR=4.399 (2.098-9.222) <0.001 3.605 (1.545-8.412) 0.003
Preoperative Alb/(g/L) Median difference=1.100 (0.000-2.400)b 0.060 - 0.525
eGFR<30 mL/(min·1.73 m2) OR=36.375 (7.775-170.186) <0.001 11.009 (1.813-66.843) 0.009
ASA physical status Ⅲ-Ⅳ OR=3.011 (1.396-6.494) 0.005 - 0.327
Calculated infusiona/[mL/(kg·h)] Median difference=0.530 (-0.070-1.140)b 0.083 - 0.315
Intraoperative urine output<0.8 mL/(kg·h) OR=2.774 (1.357-5.671) 0.004 2.698 (1.260-5.778) 0.011
[1] Nadim MK, Forni LG, Bihorac A, et al. Cardiac and vascular surgery-associated acute kidney injury: the 20th International Consensus Conference of the ADQI (acute disease quality initiative) group[J]. J Am Heart Assoc, 2018,7(11):e8834.
[2] Sanaiha Y, Kavianpour B, Dobaria V, et al. Acute kidney injury is independently associated with mortality and resource use after emergency general surgery operations[J]. Surgery, 2020,167(2):328-334.
doi: 10.1016/j.surg.2019.07.035 pmid: 31668777
[3] Vaara ST, Bellomo R. Postoperative renal dysfunction after noncardiac surgery[J]. Curr Opin Crit Care, 2017,23(5):440-446.
doi: 10.1097/MCC.0000000000000439 pmid: 28820797
[4] Grams ME, Sang Y, Coresh J, et al. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data[J]. Am J Kidney Dis, 2016,67(6):872-880.
doi: 10.1053/j.ajkd.2015.07.022 pmid: 26337133
[5] Cardinale D, Cosentino N, Moltrasio M, et al. Acute kidney injury after lung cancer surgery: Incidence and clinical relevance, predictors, and role of N-terminal pro B-type natriuretic peptide[J]. Lung Cancer, 2018,123(9):155-159.
[6] Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup[J]. Crit Care, 2016,20(1):299-311.
doi: 10.1186/s13054-016-1478-z pmid: 27670788
[7] Weiss R, Meersch M, Pavenstädt HJ, et al. Acute kidney injury: a frequently underestimated problem in perioperative medicine[J]. Dtsch Arztebl Int, 2019,116(49):833-842.
doi: 10.3238/arztebl.2019.0833 pmid: 31888797
[8] Zarbock A, Koyner JL, Hoste EAJ, et al. Update on perioperative acute kidney injury[J]. Anesth Analg, 2018,127(5):1236-1245.
doi: 10.1213/ANE.0000000000003741 pmid: 30138176
[9] du Toit L, Biccard BM. The relationship between intraoperative oliguria and acute kidney injury[J]. Br J Anaesth, 2019,122(6):707-710.
doi: 10.1016/j.bja.2019.03.008 pmid: 30961912
[10] Hori D, Katz1 NM, Fine DM, et al. Defining oliguria during cardiopulmonary bypass and its relationship with cardiac surgery-associated acute kidney injury[J]. Br J Anaesth, 2016,117(6):733-740.
pmid: 27956671
[11] Mizota T, Yamamoto Y, Hamada M, et al. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery[J]. Br J Anaesth, 2017,119(6):1127-1134.
doi: 10.1093/bja/aex255 pmid: 29136086
[12] Kim HJ, Cha SI, Kim CH, et al. Risk factors of postoperative acute lung injury following lobectomy for nonsmall cell lung cancer[J]. Medicine, 2019,98(13):e15078.
doi: 10.1097/MD.0000000000015078 pmid: 30921242
[13] O’Connor ME, Kirwan CJ, Pearse RM, et al. Incidence and associations of acute kidney injury after major abdominal surgery[J]. Intensive Care Med, 2016,42(4):521-530.
doi: 10.1007/s00134-015-4157-7 pmid: 26602784
[14] Levey AS, Coresh J, Greene T, et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values[J]. Clin Chem, 2007,53(4):766-772.
doi: 10.1373/clinchem.2006.077180 pmid: 17332152
[15] Quan S, Pannu N, Wilson T, et al. Prognostic implications of adding urine output to serum creatinine measurements for staging of acute kidney injury after majorsurgery: a cohort study[J]. Nephrol Dial Transplant, 2016,31(12):2049-2056.
doi: 10.1093/ndt/gfw374 pmid: 27941063
[16] Kellum JA, Sileanu FE, Murugan R, et al. Classifying AKI by urine output versus serum creatinine level[J]. J Am Soc Nephrol, 2015,26(9):2231-2238.
doi: 10.1681/ASN.2014070724 pmid: 25568178
[17] Eknoyan G. Rufus of ephesus and his “diseases of the kidneys”[J]. Nephron, 2002,91(3):383-390.
doi: 10.1159/000064277 pmid: 12119467
[18] Macedo E, Malhotra R, Bouchard J, et al. Oliguria is an early predictor of higher mortality in critically ill patients[J]. Kidney Int, 2011,80(7):760-770.
doi: 10.1038/ki.2011.150 pmid: 21716258
[19] Inácio R, Gameiro J, Amaro S, et al. Intraoperative oliguria does not predict postoperative acute kidney injury in major abdominal surgery: a cohort analysis [J/OL]. J Bras Nefrol[2019-12-01]. https://doi.org/10.1590/2175-8239-jbn-2019-0244.
[20] Rung GW, Marshall WK. Nerve blocks in the critical care environment[J]. Crit Care Clin, 1990,6(2):343-367.
pmid: 2188709
[21] Matot I, Dery E, Bulgov Y, et al. Fluid management during video-assisted thoracoscopic surgery for lung resection: a ran-domized, controlled trial of effects on urinary output and postoperative renal function[J]. J Thorac Cardiovasc Surg, 2013,146(2):461-466.
doi: 10.1016/j.jtcvs.2013.02.015 pmid: 23558303
[22] Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus liberal fluid therapy for major abdominal surgery[J]. N Engl J Med, 2018,378(24):2263-2274.
doi: 10.1056/NEJMoa1801601 pmid: 29742967
[1] SU Jun-qi,SONG Yang,XIE Shang. Analysis of etiological characteristics and establishment of prediction model of postoperative infections in patients undergoing oral squamous cell carcinoma surgery with free flap reconstruction [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 68-76.
[2] Hao XU,Guo-dong ZHANG,Guang-pu FAN,Yu CHEN. Preoperative plasma predictive factors of new-onset atrial fibrillation after coronary artery bypass graft surgery: A propensity score matching study [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1139-1143.
[3] Zhan-yue NIU,Yan XUE,Jing ZHANG,He-jun ZHANG,Shi-gang DING. Analysis of endoscopic and pathological features of gastric adenomatous polyps and risk factors for canceration [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1122-1127.
[4] Jing-xian ZHU,Sheng-nan LU,Yan-fang JIANG,Ling JIANG,Jian-quan WANG. Influencing factors of preoperative pulmonary function in elderly patients undergoing rotator cuff surgery [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 902-906.
[5] WANG Jia-wen,LIU Jing-chao,MENG Ling-feng,ZHANG Wei,LIU Xiao-dong,ZHANG Yao-guang. Quality of life and related factors in patients with interstitial cystitis/bladder pain syndrome [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 653-658.
[6] SUN Zheng-hui,HUANG Xiao-juan,DONG Jing-han,LIU Zhuo,YAN Ye,LIU Cheng,MA Lu-lin. Risk factors of renal sinus invasion in clinical T1 renal cell carcinoma patients undergoing nephrectomy [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 659-664.
[7] ZHOU Bo-lin,LI Wei-shi,SUN Chui-guo,QI Qiang,CHEN Zhong-qiang,ZENG Yan. Risk factors for multiple debridements of the patients with deep incisional surgical site infection after spinal surgery [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 286-292.
[8] XIA Fang-fang,LU Fu-ai,LV Hui-min,YANG Guo-an,LIU Yuan. Clinical characteristics and related factors of systemic lupus erythematosus with interstitial pneumonia [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 266-272.
[9] LIU Xiao-qiang,YANG Yang,ZHOU Jian-feng,LIU Jian-zhang,TAN Jian-guo. Blood pressure and heart rate changes of 640 single dental implant surgeries [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 390-395.
[10] HOU Guo-jin,ZHOU Fang,TIAN Yun,JI Hong-quan,ZHANG Zhi-shan,GUO Yan,LV Yang,YANG Zhong-wei,ZHANG Ya-wen. Risk factors of recurrent kyphosis in thoracolumbar burst fracture patients treated by short segmental pedicle screw fixation [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 167-174.
[11] WANG Ying-chun,HUANG Yong-hui,CHANG Hong,YAO Wei,YAN Xiu-e,LI Ke,ZHANG Yao-peng,ZHENG Wei. Characteristics of benign and malignant lesions of ampullary polyps and the accuracy of forceps biopsy [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 204-209.
[12] Jia-li CHEN,Yue-bo JIN,Yi-fan WANG,Xiao-ying ZHANG,Jing LI,Hai-hong YAO,Jing HE,Chun LI. Clinical characteristics and risk factors of cardiovascular disease in patients with elderly-onset rheumatoid arthritis: A large cross-sectional clinical study [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1040-1047.
[13] Yi-fan WANG,Zhen FAN,Yao-bin CHENG,Yue-bo JIN,Yang HUO,Jing HE. Investigation of sleep disturbance and related factors in patients with primary Sjögren’s syndrome [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1063-1068.
[14] Hang YANG,Lin-cheng YANG,Rui-tao ZHANG,Yun-peng LING,Qing-gang GE. Risks factors for death among COVID-19 patients combined with hypertension, coronary heart disease or diabetes [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 420-424.
[15] Huan LIU,Ying-dong HE,Jin-bo LIU,Wei HUANG,Na ZHAO,Hong-wei ZHAO,Xiao-hua ZHOU,Hong-yu WANG. Predictive value of vascular health indicators on newly cardiovascular events: Preliminary validation of Beijing vascular health stratification system [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 514-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .