Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (1): 7-12. doi: 10.19723/j.issn.1671-167X.2022.01.002

Previous Articles     Next Articles

Independent innovation research, development and transformation of precise bionic repair technology for oral prosthesis

SUN Yu-chun(),GUO Yu-qing,CHEN Hu,DENG Ke-hui,LI Wei-wei   

  1. Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
  • Received:2021-11-22 Online:2022-02-18 Published:2022-02-21
  • Contact: Yu-chun SUN E-mail:kqsyc@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81271181);National Natural Science Foundation of China(51475004);National Natural Science Foundation of China(52035001);National Key Research and Development Program of China(2019YFB1706900);Beijing Training Project for the Leading Talents in S & T(Z191100006119022)

RICH HTML

  

Abstract:

According to the fourth national oral health epidemiological survey report (2018), billions of teeth are lost or missing in China, inducing chewing dysfunction, which is necessary to build physiological function using restorations. Digital technology improves the efficiency and accuracy of oral restoration, with the application of three-dimensional scans, computer-aided design (CAD), computer-aided manufacturing (CAM), bionic material design and so on. However, the basic research and product development of digital technology in China lack international competitiveness, with related products basically relying on imports, including denture 3D design software, 3D oral printers, and digitally processed materials. To overcome these difficulties, from 2001, Yuchun Sun’s team, from Peking University School and Hospital of Stomatology, developed a series of studies in artificial intelligence design and precision bionics manufacturing of complex oral prostheses. The research included artificial intelligence design technology for complex oral prostheses, 3D printing systems for oral medicine, biomimetic laminated zirconia materials and innovative application of digital prosthetics in clinical practice. The research from 2001 to 2007 was completed under the guidance of Prof. Peijun Lv and Prof. Yong Wang. Under the support of the National Natural Science Foundation of China, the National Science and Technology Support Program, National High-Tech R&D Program (863 Program) and Beijing Training Project for the Leading Talents in S & T, Yuchun Sun’s team published over 200 papers in the relevant field, authorized 49 national invention patents and 1 U.S. invention patent and issued 2 national standards. It also developed 8 kinds of core technology products in digital oral prostheses and 3 kinds of clinical diagnosis and treatment programs, which significantly improved the design efficiency of complex oral prostheses, the fabrication accuracy of metal prostheses and the bionic performance of ceramic materials. Compared with similar international technologies, the program doubled the efficiency of bionic design and manufacturing accuracy and reduced the difficulty of diagnosis and cost of treatment and application by 50%, with the key indicators of those products reaching the international leading level. This program not only helped to realize precision, intelligence and efficiency during prostheses but also provided functional and aesthetic matches for patients after prostheses. The program was rewarded with the First Technical Innovation Prize of the Beijing Science and Technology Awards (2020), Gold Medal of Medical Research Group in the First Medical Science and Technology Innovation Competition of National Health Commission of the People’s Republic of China (2020) and Best Creative Award in the First Translational Medical Innovation Competition of Capital (2017). This paper is a review of the current situation of artificial intelligence design and precision bionics manufacturing of complex oral prosthesis.

Key words: Artificial intelligence, 3D printing, digital prosthodontics, Dental prosthesis, Bionic material

CLC Number: 

  • R783.4
[1] 孙玉春, 李榕, 周永胜, 等. 三维打印在口腔修复领域中的应用[J]. 中华口腔医学杂志, 2017, 52(6):381-385.
[2] 吕培军, 孙玉春. 口腔修复计算机辅助设计/制作的过去、现在和将来[J]. 北京大学学报(医学版), 2010, 42(1):14-19.
[3] Sun YC, Lü PJ, Wang Y. Computer aided design for bridge framework based on reverse engineering technology[J]. Chin J Dent Res, 2007, 41(3):23-37.
[4] 孙玉春, 赵一姣, 王勇, 等. 上颌中切牙种植体全瓷基台的计算机辅助设计[J]. 中华口腔医学杂志, 2010, 45(10):631-634.
[5] 孙玉春, 孙儒, 邓珂慧, 等. 全口义齿数字化修复技术的研发和应用进展[J]. 中华口腔医学杂志, 2018, 53(1):60-65.
[6] 王子轩, 孙玉春, 周永胜. 数字化全口义齿的研究和应用进展[J]. 口腔颌面修复学杂志, 2017, 18(5):291-295.
[7] Sun YC, Lü PJ, Wang Y. Study on CAD&RP for removable complete denture[J]. Comput Methods Programs Biomed, 2009, 93(3):266-272.
doi: 10.1016/j.cmpb.2008.10.003
[8] 孙玉春, 吕培军, 王勇. 参数化定位全口义齿人工牙三维图形数据库的研究[J]. 口腔颌面修复学杂志, 2007, 8(4):257-260.
[9] 韩景芸, 孙玉春. 全口义齿数字化设计系统[J]. 北京工业大学学报, 2009, 35(5):17-21.
[10] 孙玉春, 吕培军, 王勇, 等. 计算机辅助设计与快速成形技术辅助制作全口义齿的探讨[J]. 中华口腔医学杂志, 2021, 42(6):324-329.
[11] Dai N, Yu XL, Fan QL, et al. Complete denture tooth arrangement technology driven by a reconfigurable rule[J/OL]. PLoS One, 2018, 13(6): e0198252 [2021-11-02]. https://doi.org/10.1371/journal.pone.0198252 .
[12] Dai N, Yu XL, Sun YC. Gingival morphology-controlled design of the complete denture baseplate[J/OL]. Int J Numer Method Biomed Eng, 2018, 34(2): e2911 [2021-11-02]. https://doi.org/10.1002/cnm.2911 .
[13] Cheng C, Cheng X, Dai N, et al. Prediction of facial deformation after complete denture prosjournal using BP neural network[J]. Comput Biol Med, 2015, 66(C):103-122.
doi: 10.1016/j.compbiomed.2015.08.018
[14] Xiong YX, Zhao YJ, Yang HF, et al. Comparison between interactive closest point and procrustes analysis for determining the median sagittal plane of three-dimensional facial data[J]. J Craniofac Surg, 2016, 27(2):441-444.
doi: 10.1097/SCS.0000000000002376
[15] Cheng C, Cheng XS, Dai N, et al. Deformation of facial model for complete denture prosjournal using ARAP group method and elastic properties[J]. Med Biol Eng Comput, 2017, 55(9):1635-1647.
doi: 10.1007/s11517-017-1626-x pmid: 28176265
[16] Yuan FS, Cheng C, Dai N, et al. Prediction of aesthetic reconstruction effects in edentulous patients[J/OL]. Sci Rep, 2017, 7: 18077 [2021-11-02]. https://doi.org/10.1038/s41598-017-17065-y .
[17] Yu XL, Cheng XS, Dai N, et al. Study on digital teeth selection and virtual teeth arrangement for complete denture[J]. Comput Methods Programs Biomed, 2018, 155(1):53-60.
doi: 10.1016/j.cmpb.2017.11.022
[18] Deng KH, Wang Y, Zhou YS, et al. Functionally suitable digital removable complete dentures: A dental technique[J]. J Prosthet Dent, 2020, 123(6):795-799.
doi: 10.1016/j.prosdent.2019.05.024
[19] Yuan FS, Lü PJ, Wang PF, et al. Custom fabrication of try-in wax complete denture[J]. Rapid Prototyp J, 2016, 22(3):539-543.
doi: 10.1108/RPJ-09-2014-0129
[20] 张长东, 戴宁, 廖文和, 等. 部分缺失牙齿咬合面自适应重建算法[J]. 中国生物医学工程学报, 2012, 23(2):203-210.
[21] Tian SK, Wang MH, Yuan FL, et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imaging, 2021, 40(9):2415-2427.
doi: 10.1109/TMI.2021.3077334
[22] Ye HQ, Wang ZX, Sun YC, et al. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects[J]. J Prosthet Dent, 2021, 126(2):257-261.
doi: 10.1016/j.prosdent.2020.05.026
[23] Li H, Lü PJ, Sun YC, et al. A quantitative study of 3D-scanning frequency and Δd of tracking points on the tooth surface[J/OL]. Sci Rep, 2015, 5: 14350 [2021-11-02]. https://doi.org/10.1038/srep14350 .
[24] Tian SK, Dai N, Li LL, et al. Three-dimensional mandibular motion trajectory-tracking system based on BP neural network[J]. Math Biosci Eng, 2020, 17(5):5709-5726.
doi: 10.3934/mbe.2020307 pmid: 33120574
[25] Li LL, Sun YC, Wang Y, et al. Accuracy of a novel virtual articulator for recording three-dimensional dentition[J]. Int J Prosthodont, 2020, 33(4):441-451.
doi: 10.11607/ijp.6480
[26] Yuan FS, Dai N, Tian SK, et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks[J/OL]. Int J Numer Method Biomed Eng, 2020, 36(5): e3321 [2021-11-02]. https://doi.org/10.1002/cnm.3321 .
[27] 北京大学口腔医学院, 南京航空航天大学, 先临三维科技股份有限公司, 等. 牙颌模型三维扫描仪技术要求:GB/T39111-2020[S]. 北京: 中国标准出版社, 2020: 1-16.
[28] 北京大学口腔医学院, 南京航空航天大学, 山东新华医疗器械股份有限公司. 口腔固定修复CAD软件技术要求:GB/T36108-2018[S]. 北京: 中国标准出版社, 2018: 1-12.
[29] 宋杨, 赵一姣, 孙玉春, 等. 国产计算机辅助设计软件设计精度与计算机辅助制作设备加工精度初探[J]. 中华口腔医学杂志, 2013, 48(9):550-553.
[30] Wang X, Lü PJ, Yang S, et al. Nano hydroxyapatite particles promote osteogenesis in three-dimensional bio-printing construct consisting of alginate/gelatin/hASCs[J]. RSC Adv, 2016, 6(8):6832-6842.
doi: 10.1039/C5RA21527G
[31] Wang SY, Li R, Xu YX, et al. Fabrication and application of a 3D-printed poly-epsilon-caprolactone cage scaffold for bone tissue engineering [J/OL]. Biomed Res Int, 2020, 2020: 2087475 [2021-11-02]. https://doi.org/10.1155/2020/2087475 .
[32] Chen H, Wang H, Lü PJ, et al. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture [J/OL]. Biomed Res Int, 2015, 2015: 453968 [2021-11-02]. https://doi.org/10.1155/2015/453968 .
[33] Sun Y, Ding Q, Tang L, et al. Accuracy of a chairside fused deposition modeling 3D-printed single-tooth surgical template for implant placement: An in vitro comparison with a light cured template[J]. J Craniomaxillofac Surg, 2019, 47(8):1216-1221.
doi: 10.1016/j.jcms.2019.03.019
[34] Chen H, Li H, Zhao YJ, et al. Adaptation of removable partial denture frameworks fabricated by selective laser melting[J]. J Prosthet Dent, 2019, 122(3):316-324.
doi: S0022-3913(18)31162-4 pmid: 30922559
[35] Yuan FS, Sun Y, Zhang L, et al. Accuracy of chair-side fused-deposition modelling for dental applications[J]. Rapid Prototyp J, 2019, 25(5):857-863.
doi: 10.1108/RPJ-04-2018-0082
[36] Ye HQ, Bai HF, Li ZY, et al. A metal template for preparing guiding planes for removable partial dentures[J]. J Prosthet Dent, 2021, 126(4):471-476.
doi: 10.1016/j.prosdent.2020.05.013
[37] Li LL, Chen H, Zhao YJ, et al. Design of occlusal wear facets of fixed dental prostheses driven by personalized mandibular movement[J/OL]. J Prosthet Dent, 2021(2021-02-04) [2021-11-02]. https://doi.org/10.1016/j.prosdent.2020.09.055 .
[38] Li ZY, Bai HF, Zhao YJ, et al. 3D evaluation of accuracy of tooth preparation for laminate veneers assisted by rigid constraint guides printed by selective laser melting[J]. Chin J Dent Res, 2020, 23(3):183-189.
[39] Ye HQ, Ning J, Li M, et al. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques[J]. Int J Prosthodont, 2017, 30(4):348-353.
doi: 10.11607/ijp.5270
[40] Yuan FS, Chen LT, Wang XF, et al. Comparative evaluation of the artefacts index of dental materials on two-dimensional cone-beam computed tomography[J/OL]. Sci Rep, 2016, 6: 26107[2021-11-02]. https://doi.org/10.1038/srep26107.
[41] Li R, Wang Y, Hu ML, et al. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: An in vitro study[J]. Int J Prosthodont, 2019, 32(5):439-443.
doi: 10.11607/ijp.6262
[42] Li R, Li WW, Wang Y, et al. Knife-edged crown fabricated by 3-dimensional gel deposition and soft milling[J/OL]. J Prosthet Dent, 2021(2021-05-26) [2021-11-02]. https://doi.org/10.1016/j.prosdent.2021.04.011 .
[43] Li R, Chen H, Wang Y, et al. Suitability of the triple-scan method with a dental laboratory scanner to assess the 3D adaptation of zirconia crowns[J]. J Prosthet Dent, 2021, 125(4):651-656.
doi: 10.1016/j.prosdent.2020.02.010
[44] Li R, Chen H, Wang Y, et al. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs[J/OL]. J Mech Behav Biomed Mater, 2021, 115(19): 104255 [2021-11-02]. https://doi.org/10.1016/j.jmbbm.2020.104255 .
[45] Yuan FS, Sun YC, Wang Y, et al. Accuracy evaluation of a new three-dimensional reproduction method of edentulous dental casts, and wax occlusion rims with jaw relation[J]. Int J Oral Sci, 2013, 5(3):155-161.
doi: 10.1038/ijos.2013.49
[46] Li WW, Xie QF, Wang Y, et al. A pilot study of digital recording of edentulous jaw relations using a handheld scanner and specially designed headgear[J/OL]. Sci Rep, 2018, 8: 8975 [2021-11-02]. https://doi.org/10.1038/s41598-018-27277-5 .
[47] Li WW, Li LL, Wang Y, et al. Accuracy of recording edentulous jaw relations by using an optical jaw tracking system An in vitro study [J/OL]. Int J Prosthodont, 2021 (2021-03-02) [2021-11-02]. https://doi.org/10.11607/ijp.7126 .
[48] 孙玉春, 王勇, 邓珂慧, 等. 功能易适数字化全口义齿的自主创新研发[J]. 北京大学学报(医学版), 2020, 52(2):390-394.
[49] Chen H, Xu Y, Chen LT, et al. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays [J/OL]. Sci Rep, 2016, 6 : 19207 [2021-11-02]. https://doi.org/10.1038/srep19207 .
[50] Sun YC, Hu C, Hong L, et al. Clinical evaluation of final impressions from three-dimensional printed custom trays [J/OL]. Sci Rep, 2017, 7: 14958 [2021-11-02]. https://doi.org/10.1038/s41598-017-14005-8 .
[51] 曹悦, 陈俊锴, 赵一姣, 等. 口内三维扫描技术临床应用精度的研究进展[J]. 中华口腔医学杂志, 2020, 55(3):201-205.
[52] 沈妍汝, 陈虎, 马珂楠, 等. 多色多硬度牙颌模型感光聚合物喷射一体化三维打印精度初探[J]. 中华口腔医学杂志, 2021, 56(7):652-658.
[53] Peng L, Zhao J, Wang Z, et al. Accuracy of root-end resection using a digital guide in endodontic surgery: An in vitro study[J]. J Dent Sci, 2021, 16(1):45-50.
doi: 10.1016/j.jds.2020.06.024
[54] Ye HQ, Li XX, Wang GB, et al. A novel computer-aided design/computer-assisted manufacture method for one-piece removable partial denture and evaluation of fit[J]. Int J Prosthodont, 2018, 31(2):149-151.
doi: 10.11607/ijp.5508
[55] 李忠义, 白鹤飞, 王勇, 等. 牙体预备定量引导技术的研究现状[J]. 中华口腔医学杂志, 2018, 53(2):137-140.
[56] Sun YC, Chen H, Vorobyev AY, et al. High-intensity femto-second laser ablation of human enamel and dentin[J]. J Med Imaging Health Inform, 2014, 4(3):422-426.
doi: 10.1166/jmihi.2014.1280
[1] Xinxin ZHAN,Lulu CAO,Dong XIANG,Hao TANG,Dandan XIA,Hong LIN. Effect of printing orientation on physical and mechanical properties of 3D printing prosthodontic base resin materials [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 345-351.
[2] Sui LI,Wenjie MA,Shimin WANG,Qian DING,Yao SUN,Lei ZHANG. Trueness of different digital design methods for incisal guidance of maxillary anterior implant-supported single crowns [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 81-87.
[3] Xiang LIU,Hui-hui XIE,Yu-feng XU,Xiao-dong ZHANG,Xiao-feng TAO,Lin LIU,Xiao-ying WANG. Value of artificial intelligence in the improvement of diagnostic consistency of radiology residents [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 670-675.
[4] Meng-en OU,Yun DING,Wei-feng TANG,Yong-sheng ZHOU. Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 548-552.
[5] ABUDUREHEMAN Kaidierya,Rong-geng ZHANG,Hao-nan QIAN,Zhen-yang ZOU,YESITAO Danniya,Tian-yuan FAN. Preparation and in vitro evaluation of FDM 3D printed theophylline tablets with personalized dosage [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1202-1207.
[6] WANG Juan,YU Hua-jie,SUN Jing-de,QIU Li-xin. Application evaluation of prefabricated rigid connecting bar in implants immediate impression preparation of edentulous jaw [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 187-192.
[7] MA Ke-nan,CHEN Hu,SHEN Yan-ru,ZHOU Yong-sheng,WANG Yong,SUN Yu-chun. Finite element analyses of retention of removable partial denture circumferential clasps manufactured by selective laser melting [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 105-112.
[8] Feng LIANG,Min-jie WU,Li-dong ZOU. Clinical observation of the curative effect after 5-year follow-up of single tooth implant-supported restorations in the posterior region [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 970-976.
[9] Lin-lin LI,Yi-jiao ZHAO,Hu CHEN,Yong WANG,Yu-chun SUN. Accuracy of intercuspal occlusion in 3D reconstruction with the dental articulator position method [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 138-143.
[10] Qiang LUO,Qian DING,Lei ZHANG,Qiu-fei XIE. Quantitative analysis of occlusal changes in posterior partial fixed implant supported prostheses [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1119-1123.
[11] ZHANG Da, WANG Lin-chuan, ZHOU Yan-heng, LIU Xiao-mo, LI Jing. Precision of three-dimensional printed brackets#br# [J]. Journal of Peking University(Health Sciences), 2017, 49(4): 704-708.
[12] ZHAO Li-ping, ZHAN Ya-lin, HU Wen-jie, WANG Hao-jie, WEI Yi-ping, ZHEN Min, Xu Tao, LIU Yun-song. Dental implantation and soft tissue augmentation after ridge preservation in a molar site: a case report [J]. Journal of Peking University(Health Sciences), 2016, 48(6): 1090-1094.
[13] CUI Hong-Yan, DI Ping, LI Jian-Hui, LIN Ye, LIU Rong-Rong. Application of spark erosion technology in manufacture of implant prosthesis [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 336-339.
[14] NIE Jie, WANG Xiao-Yan, GAO Xue-Jun. Micro-CT observations of the adaptation at gingival wall in Class Ⅱ restorations with different dental restorative materials [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 317-320.
[15] YANG Xin, SUN Yi-Fei, TIAN Lei, SI Wen-Jie, FENG Hai-Lan, LIU Yi-Hong. Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[2] . [J]. Journal of Peking University(Health Sciences), 2007, 39(5): 498 -502 .
[3] . [J]. Journal of Peking University(Health Sciences), 2000, 32(4): 300 .
[4] . [J]. Journal of Peking University(Health Sciences), 2001, 33(6): 559 -561 .
[5] . [J]. Journal of Peking University(Health Sciences), 2001, 33(6): 565 .
[6] . [J]. Journal of Peking University(Health Sciences), 2008, 40(1): 39 -42 .
[7] . [J]. Journal of Peking University(Health Sciences), 2008, 40(6): 600 -602 .
[8] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 537 -540 .
[9] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 90 -94 .
[10] . [J]. Journal of Peking University(Health Sciences), 2003, 35(4): 382 -385 .