Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (5): 763-774. doi: 10.19723/j.issn.1671-167X.2024.05.003

Previous Articles     Next Articles

Detection of pathogenic gene mutations in thirteen cases of congenital bilateral absence of vas deferens infertility patients

Ying TANG, Yongbo ZHANG, Danhong WU, Yanhong LIN, Fenghua LAN*()   

  1. Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
  • Received:2023-11-25 Online:2024-10-18 Published:2024-10-16
  • Contact: Fenghua LAN E-mail:fhlan@mail.fjmu.edu.cn
  • Supported by:
    Natural Science Foundation of Fujian Province(2020J011149);Natural Science Foundation of Fujian Province(2023J011351);Medical Research Project of 900th Hospital of Joint Logistics Support Force(2021MS03)

RICH HTML

  

Abstract:

Objective: To detect the cystic fibrosis transmembrane transduction regulator (CFTR) gene mutations and congenital bilateral absence of vas deferens (CBAVD) susceptibility gene mutations in patients with CBAVD, and to explore their association with the risk of CBAVD. Methods: Whole-exome sequencing and Sanger sequencing validation were conducted on the pathogenic genes CFTR, adhesion G protein-coupled receptor G2 (ADGRG2), sodium channel epithelial 1 subunit beta (SCNN1B), carbonic anhydrase 12 (CA12), and solute carrier family 9 member A3 (SLC9A3) in thirteen cases of isolated CBAVD patients. The polymorphic loci, intron and flanking sequences of CFTR gene were amplified by polymerase chain reaction (PCR) followed by Sanger sequencing. Bioinformatics methods were employed for conservative analysis and deleterious prediction of novel susceptibility gene mutations in CBAVD. Genetic analysis was performed on the pedigree of one out of thirteen patients with CBAVD to evaluate the risk of inheritance in offspring. Results: Exome sequencing revealed CFTR gene exon mutations in only six of the thirteen CBAVD patients, with six missense mutations c.2684G>A(p.Ser895Asn), c.4056G>C(p.Gln1352His), c.2812G>(p.Val938Leu), c.3068T>G(p.Ile1023Arg), c.374T>C(p.Ile125Thr), c.1666A>G(p.Ile556Val)), and one nonsense mutation (c.1657C>T(p.Arg553Ter). Among these six patients, two also had the CFTR homozygous p.V470 site, additionally, mutations in CFTR gene exon regions were not detected in the remaining seven patients. Within the thirteen CBAVD patients, three carried the homozygous p.V470 polymorphic site, four carried the 5T allele, two carried the TG13 allele, and ten carried the c.-966T>G site. Four CBAVD patients simultaneously carried 2-3 of the aforementioned CFTR gene mutation sites. Susceptibility gene mutations in CBAVD among the thirteen patients included one ADGRG2 missense mutation c.2312A>G(p.Asn771Ser), two SLC9A3 missense mutations c.2395T>C(p.Cys799Arg), c.493G>A(p.Val165Ile), one SCNN1B missense mutation c.1514G>A(p.Arg505His), and one CA12 missense mutation c.1061C>T (p.Ala354Val). Notably, the SLC9A3 gene c.493G>A (p.Val165Ile) mutation site was first identified in CBAVD patients. The five mutations exhibited an extremely low population mutation frequency in the gnomAD database, classifying them as rare mutations. Predictions from Mutation Taster and Polyphen-2 software indicated that the harmfulness level of the SLC9A3 gene c.493G>A (p.Val165Ile) site and the SCNN1B gene c.1514G>A (p.Arg505His) site were disease causing and probably damaging. The genetic analysis of one pedigree revealed that the c.1657C>T (p.Arg553Ter) mutation in the proband was a de novo mutation, as neither the proband's father nor mother carried this mutation. The proband and his spouse conceived a daughter through assisted reproductive technology, and the daughter inherited the proband's pathogenic mutation c.1657C>T (p.Arg553Ter). Conclusion: CFTR gene mutations remain the leading cause of CBAVD in Chinese patients; however, the distribution and frequency of mutations differ from data reported in other domestic and international studies, highlighting the need to expand the CFTR mutation spectrum in Chinese CBAVD patients. The susceptibility genes ADGRG2, SLC9A3, SCNN1B, and CA12 may explain some cases of CBAVD without CFTR mutations. Given the lack of specific clinical manifestations in CBAVD patients, it is recommended that clinicians conduct further physical examinations and consider scrotal or transrectal ultrasound before making a defi-nitive diagnosis. It is advisable to employ CFTR gene mutation testing in preconception genetic screening to reduce the risk of CBAVD and cystic fibrosis in offspring.

Key words: Congenital bilateral absence of the vas deferens, Cystic fibrosis transmembrane conduc-tance regulator, Adhesion G protein-coupled receptor G2, Solute carrier family 9 member A3

CLC Number: 

  • R394.1

Table 1

Partial PCR primer sequences of pathogenic genes and susceptible genes"

Gene Sequence of primer Product length/bp
CFTR(exon4) F: GTTTCACATATGGTATGACCCT R: GGCAGTTTACAGAAGATACTCAA 573
CFTR(exon12) F: AGCAATGTTGTTTTTGACCAACT R: AATGTGATTCTTAACCCACTAGCC 427
CFTR(exon17) F: GAGTGATTTTGAGGTTAAGGGTG R: CACAGAAATATTAGGAGCAACAAT 587
CFTR(exon19) F: CTCACCAACATGTTTTCTTTGA R: CCAAAATGAAGTCACATGGTCA 399
CFTR(exon25) F: AGGTAGTGGGGGTAGAGGG R: TTCGGAAGAAAACACAAGACTC 495
CFTR(V470M) F: GTCTCTTTTACTTTCCCTTGTATC R: ATTCACAGTAGCTTACCCATAGA 525
CFTR(IVS9-10) F: AACTTGATAATGGGCAAATATCTTA R: AAAGCCACTGAAAATAATATGAGG 613
CFTR promoter F: TCACAAGACCCTTGCCTTAG R: GCCTTTTCCAGAGGCGACCT 1402
CFTR(TAAA)n F: AACTTGATAATGGGCAAATATCTTA R: AAAGCCACTGAAAATAATATGAGG 613
ADGRG2(exon25) F: CATCCAGTCATGTGCCAAAG R: CTGTGAAGGCTGCTGTGAAG 706
SLC9A3(exon2) F: CTGGACGCCGGCTACTTC R: CTTGGTCACGAGGGCCTAC 303
SLC9A3(exon16) F: AGCAGGTGGGGTATGTCTTG R: GAGACCTGGAGGGAGAGGAG 537
SCNN1B(exon12) F: GCAGTTCTCGTTTGGACCTC R: TTCCTGGGAGGTGATTCTTG 511
CA12(exon11) F: AAACGGCCTCATTCCATACCT R: CAGCATGGCTTGGTTTGTGATT 463

Table 2

Clinical data of patients with CBAVD"

Items CBAVD (n=13) Control (n=54) P value
Semen volume/mL 0.79±0.39 4.10±1.22 <0.001*
Semen pH 6.70 (6.35, 7.00) 7.29±0.16 <0.001*
Berry sugar/μmoL 0.60 (0, 1.15) 65.47±35.27 <0.001*
Seminal plasma α-glucosidase /mIU 65.95 (36.68, 81.35) 2.40 (0.90, 5.55) <0.001*
FSH/(IU/L) 5.44 (3.89, 7.48, ) 4.63 (2.97, 5.23) 0.113
LH/(IU/L) 3.49 (2.85, 4.83) 3.49 (2.70, 5.39) 0.739
T/(ng/dL) 414.72±151.20 435.95±144.67 0.639
E2/(ng/L) 34.38±5.84 41.60 (32.18, 48.82) 0.038*
PRL/(μg/L) 9.43 (5.99, 19.06) 8.29 (5.65, 10.75) 0.247

Table 3

Whole exon sequencing of CFTR and susceptibility genes"

No. CFTR gene (het/homo) ADGRG2 gene (het/homo) SLC9A3 gene (het/homo) SCNN1B gene (het/homo) CA12 gene (het/homo)
1 N N c.2395T>C (p.Cys799Arg)homo N N
2 N N c.2395T>C (p.Cys799Arg)homo N N
3 N N c.2395T>C (p.Cys799Arg)het c.493G>A (p.Val165Ile)het N N
4 c.2684G>A (p.Ser895Asn)het c.4056G>C (p.Gln1352His)het N c.2395T>C (p.Cys799Arg)het N N
5 c.2812G>T (p.Val938Leu)het N c.2395T>C (p.Cys799Arg)het N N
6 N c.2312A>G (p.Asn771Ser)homo c.2395T>C (p.Cys799Arg)het N N
7 N c.2312A>G (p.Asn771Ser)homo c.2395T>C (p.Cys799Arg)het N N
8 c.1657C>T (p.Arg553Ter)het c.2312A>G (p.Asn771Ser) homo c.2395T>C (p.Cys799Arg)homo N c.1061C>T (p.Ala354Val)het
9 N N c.2395T>C (p.Cys799Arg)het N N
10 c.3068T>G (p.Ile1023Arg)het N c.2395T>C (p.Cys799Arg)het N N
11 N N c.2395T>C (p.Cys799Arg)homo N N
12 c.374T>C (p.Ile125Thr)het c.2395T>C (p.Cys799Arg)het c.1514G>A (p.Arg505His)het N
13 c.1666A>G (p.Ile556Val)het N N N N

Figure 1

Sanger sequencing of CFTR exon mutation site and pedigree analysis of the c.1657C>T(p.Arg553Ter) patient A, CFTR exon mutation Sanger sequencing of patients; B, Sanger sequencing of CFTR gene in c.1657C>T(p.Arg553Ter) patient family; C, pedigree analysis diagram of c.1657C>T(p.Arg553Ter) patient; D, rectal ultrasound images of patients with congenital bilateral absence of the vas de-ferens. CFTR, cystic fibrosis transmembrane conductance regulator. Arrow, the proband."

Figure 2

Sanger sequencing and conservative analysis of exon mutation sites of susceptibility genes A, Sanger sequencing of patient susceptibility genes; B, schematic diagram of conservative analysis of mutation sites of susceptibility genes. SLC9A3, solute carrier family 9 member A3; ADGRG2, adhesion G protein-coupled receptor G2; SCNN1B, sodium channel epithelial 1 subunit beta; CA12, carbonic anhydrase."

Table 4

Allele frequency and pathogenicity classification of susceptible genes mutation"

Mutation site Reference ID gnomAD Clinical variation ACMG* Mutation taster Polyphen-2
ADGRG2 c. 2312A>G (p.Asn771Ser) rs3924227 0.00211 Benign Benign Polymorphism Benign (0.009)
SLC9A3 c. 2395T>C (p.Cys799Arg) rs2247114 0.000001242 Benign Benign Polymorphism Benign (0.000)
SLC9A3 c.493G>A (p.Val165Ile) rs369854335 0.00006534 Uncertain significance Uncertain significance Disease causing Probably damaging (0.928)
SCNN1B c.1514G>A (p.Arg505His) rs138784278 0.0001413 Conflicting Uncertain significance Disease causing Probably damaging (0.575)
CA12 c.1061C>T (p.Ala354Val) rs201427665 0.00005143 Likely benign Likely benign Polymorphism Benign (0.008)

Table 5

Polymorphic loci, intron and flanking sequences mutations of CFTR gene in patients with CBAVD"

No. V470M genotypes (TG)mTn genotypes IVS10-11 (TAAA)n Uupstream promoter sequence 1.4 kb
1 M/M TG13-5T/TG12-5T 10/10 c.-966T>Ghomo
2 M/M TG11-7T/TG1217T 10/10 c.-966T>Ghomo
3 M/M TG13-5T/TG12-7T 10/10 c.-966T>Ghomo
4 V/M TG11-7T/TG12-7T 9/10 c.-966T>Ghet
5 V/M TG11-7T/TG12-7T 9/10 c.-966T>Ghet
6 V/V TG12-5T/TG12-5T 9/9 N
7 M/M TG12-7T/TG12-7T 10/10 c.-966T>Ghomo
8 V/V TG12-7T/TG11-7T 9/9 N
9 V/M TG12-7T/TG11-7T 9/10 c.-966T>Ghet
10 V/M TG12-5T/TG12-7T 9/10 c.-966T>Ghet
11 V/M TG12-7T/TG11-7T 9/10 c.-966T>Ghet
12 V/V TG12-7T/TG11-7T 9/9 N
13 V/M TG11-7T/TG12-7T 9/10 c.-966T>Ghet

Figure 3

Sanger sequencing of polymorphic loci, intron and flanking sequences of CFTR gene A, exon11 p.V470M; B, intron 9 (TG)mTn; C, IVS10-11 (TAAA)n; D, c.-966T>G. CFTR, cystic fibrosis transmembrane conductance regulator."

1 Yang B , Lei C , Yang D , et al. Whole-exome sequencing identified CFTR variants in two consanguineous families in China[J]. Front Genet, 2021, 12, 631221.
doi: 10.3389/fgene.2021.631221
2 王宇刚, 马淑霞, 姚晓飞, 等. 男性不育伴精液量少的临床特点分析[J]. 生殖医学杂志, 2023, 32 (7): 997- 1002.
doi: 10.3969/j.issn.1004-3845.2023.07.005
3 Chillón M , Casals T , Mercier B , et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens[J]. N Engl J Med, 1995, 332 (22): 1475- 1480.
doi: 10.1056/NEJM199506013322204
4 Qu X , Li L , Cui C , et al. Correlation between CFTR variants and outcomes of ART in patients with CAVD in Central China[J]. Sci Rep, 2023, 13 (1): 64.
doi: 10.1038/s41598-022-26384-8
5 Wang H , An M , Liu Y , et al. Genetic diagnosis and sperm retrieval outcomes for Chinese patients with congenital bilateral absence of vas deferens[J]. Andrology, 2020, 8 (5): 1064- 1069.
doi: 10.1111/andr.12769
6 Fang J , Wang X , Sun X , et al. Congenital absence of the vas deferens with hypospadias or without hypospadias: Phenotypic findings and genetic considerations[J]. Front Genet, 2022, 13, 1035468.
doi: 10.3389/fgene.2022.1035468
7 Bieth E , Hamdi SM , Mieusset R . Genetics of the congenital absence of the vas deferens[J]. Hum Genet, 2021, 140 (1): 59- 76.
doi: 10.1007/s00439-020-02122-w
8 Lu Y , Xie Y , Li M , et al. A novel ADGRG2 truncating variant associated with X-linked obstructive azoospermia in a large Chinese pedigree[J]. J Assist Reprod Genet, 2023, 40 (7): 1747- 1754.
doi: 10.1007/s10815-023-02839-3
9 Wu YN , Chen KC , Wu CC , et al. SLC9A3 affects vas deferens development and associates with Taiwanese congenital bilateral absence of the vas deferens[J]. Biomed Res Int, 2019, 10, 3562719.
10 Shen Y , Yue HX , Li FP , et al. SCNN1B and CA12 play vital roles in occurrence of congenital bilateral absence of vas deferens (CBAVD)[J]. Asian J Androl, 2019, 21 (5): 525- 527.
doi: 10.4103/aja.aja_112_18
11 Guo X , Liu K , Liu Y , et al. Clinical and genetic characteristics of cystic fibrosis in Chinese patients: A systemic review of reported cases[J]. Orphanet J Rare Dis, 2018, 13 (1): 224.
doi: 10.1186/s13023-018-0968-2
12 Souza PFN , Amaral JL , Bezerra LP , et al. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor[J]. J Biomol Struct Dyn, 2022, 40 (12): 5493- 5506.
doi: 10.1080/07391102.2020.1871415
13 顾怡栋, 邓学东, 程洪波, 等. CBAVD患者超声分型在穿刺取精方式选择中的应用价值[J]. 医学影像学杂志, 2019, 29 (9): 1621- 1625.
14 Prins S , Corradi V , Sheppard DN , et al. Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains[J]. J Biol Chem, 2022, 298, 101615.
doi: 10.1016/j.jbc.2022.101615
15 Gaikwad A , Khan S , Kadam S , et al. Cystic fibrosis transmembrane conductance regulator-related male infertility: Relevance of genetic testing & counselling in Indian population[J]. Indian J Med Res, 2020, 152 (6): 575- 583.
doi: 10.4103/ijmr.IJMR_906_18
16 Li H , Lin L , Hu X , et al. Liver failure in a Chinese cystic fibrosis child with homozygous R553X mutation[J]. Front Pediatr, 2019, 20 (7): 36.
17 Leung GKC , Ying D , Mak CCY , et al. CFTR founder mutation causes protein trafficking defects in Chinese patients with cystic fibrosis[J]. Mol Genet Genomic Med, 2017, 5 (1): 40- 49.
doi: 10.1002/mgg3.258
18 Luo S , Feng J , Zhang Y , et al. Mutation analysis of the cystic fibrosis transmembrane conductance regulator gene in Chinese congenital absence of vas deferens patients[J]. Gene, 2021, 765, 145045.
doi: 10.1016/j.gene.2020.145045
19 Tadaka S , Hishinuma E , Komaki S , et al. jMorp updates in 2020:Large enhancement of multi-omics data resources on the general Japanese population[J]. Nucleic Acids Res, 2021, 49 (D1): D536- D544.
doi: 10.1093/nar/gkaa1034
20 Le VS , Tran KT , Bui H TP , et al. A Vietnamese human genetic variation database[J]. Hum Mutat, 2019, 40 (10): 1664- 1675.
doi: 10.1002/humu.23835
21 Gaikwad A , Khan S , Kadam S , et al. The CFTR gene mild variants poly-T, TG repeats and M470V detection in Indian men with congenital bilateral absence of vas deferens[J]. Andrologia, 2018, 50 (2): e12858.
doi: 10.1111/and.12858
22 Casals T , Bassas L , Egozcue S , et al. Heterogeneity for mutations in the CFTR gene and clinical correlations in patients with con-genital absence of the vas deferens[J]. Hum Reprod, 2000, 15 (7): 1476- 1483.
doi: 10.1093/humrep/15.7.1476
23 Grangeia A , Niel F , Carvalho F , et al. Characterization of cystic fibrosis conductance transmembrane regulator gene mutations and IVS8 poly(T) variants in Portuguese patients with congenital absence of the vas deferens[J]. Hum Reprod, 2004, 19 (11): 2502- 2508.
doi: 10.1093/humrep/deh462
24 Fathy M , Ramzy T , Elmonem MA , et al. Molecular screening of CFTR gene in Egyptian patients with congenital bilateral absence of the vas deferens: A preliminary study[J]. Andrologia, 2016, 48 (10): 1307- 1312.
doi: 10.1111/and.12563
25 Cheng H , Yang S , Meng Q , et al. Genetic analysis and intracytoplasmic sperm injection outcomes of Chinese patients with congenital bilateral absence of vas deferens[J]. J Assist Reprod Genet, 2022, 39 (3): 719- 728.
doi: 10.1007/s10815-022-02417-z
26 Yuan P , Liang ZK , Liang H , et al. Expanding the phenotypic and genetic spectrum of Chinese patients with congenital absence of vas deferens bearing CFTR and ADGRG2 alleles[J]. Andrology, 2019, 7 (3): 329- 340.
doi: 10.1111/andr.12592
27 Ni WH , Jiang L , Fei QJ , et al. The CFTR polymorphisms poly-T, TG-repeats and M470V in Chinese males with congenital bila-teral absence of the vas deferens[J]. Asian J Androl, 2012, 14 (5): 687- 690.
doi: 10.1038/aja.2012.43
28 Tosco A , Castaldo A , Colombo C , et al. Clinical outcomes of a large cohort of individuals with the F508del/5T; TG12 CFTR ge-notype[J]. J Cyst Fibros, 2022, 21 (5): 850- 855.
doi: 10.1016/j.jcf.2022.04.020
29 Cuppens H , Lin W , Jaspers M , et al. Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation[J]. J Clin Invest, 1998, 101 (2): 487- 496.
doi: 10.1172/JCI639
30 Nykamp K , Truty R , Riethmaier D , et al. Elucidating clinical phenotypic variability associated with the polyT tract and TG repeats in CFTR[J]. Hum Mutat, 2021, 42 (9): 1165- 1172.
doi: 10.1002/humu.24250
31 Kerschner JL , Meckler F , Coatti GC , et al. The impact of geno-mic distance on enhancer-promoter interactions at the CFTR locus[J]. J Cell Mol Med, 2024, 28 (4): e18142.
doi: 10.1111/jcmm.18142
32 Verlingue C , Vuillaumier S , Mercier B , et al. Absence of mutations in the interspecies conserved regions of the CFTR promoter region in cystic fibrosis (CF) and CF related patients[J]. J Med Genet, 1998, 35 (2): 137- 140.
doi: 10.1136/jmg.35.2.137
33 Bai S , Du Q , Liu X , et al. The detection and significance of cys-tic fibrosis transmembrane conductance regulator gene promoter mutations in Chinese patients with congenital bilateral absence of the vas deferens[J]. Gene, 2018, 672 (25): 64- 71.
34 Zhuo JL , Soleimani M , Li XC . New insights into the critical importance of intratubular Na(+)/H(+) exchanger 3 and its potential therapeutic implications in hypertension[J]. Curr Hypertens Rep, 2021, 23 (6): 34.
doi: 10.1007/s11906-021-01152-7
35 Wang YY , Lin YH , Wu YN , et al. Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice[J]. PLoS Genet, 2017, 13 (4): e1006715.
doi: 10.1371/journal.pgen.1006715
36 Karacan Küçükali G , çetinkaya S , Tunç G , et al. Clinical management in systemic type pseudohypoaldosteronism due to SCNN1B variant and literature review[J]. J Clin Res Pediatr Endocrinol, 2021, 13 (4): 446- 451.
doi: 10.4274/jcrpe.galenos.2020.2020.0107
37 Ideozu JE , Liu M , Riley-Gillis BM , et al. Diversity of CFTR variants across ancestries characterized using 454 727 UK biobank whole exome sequences[J]. Genome Med, 2024, 16 (1): 43.
doi: 10.1186/s13073-024-01316-5
38 Ni Q , Chen X , Zhang P , et al. Systematic estimation of cystic fibrosis prevalence in Chinese and genetic spectrum comparison to Caucasians[J]. Orphanet J Rare Dis, 2022, 17 (1): 129.
doi: 10.1186/s13023-022-02279-9
[1] Enci XUE, Xi CHEN, Xueheng WANG, Siyue WANG, Mengying WANG, Jin LI, Xueying QIN, Yiqun WU, Nan LI, Jing LI, Zhibo ZHOU, Hongping ZHU, Tao WU, Dafang CHEN, Yonghua HU. Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 775-780.
[2] WU Jun-yi,YU Miao,SUN Shi-chen,FAN Zhuang-zhuang,ZHENG Jing-lei,ZHANG Liu-tao,FENG Hai-lan,LIU Yang,HAN Dong. Detection of EDA gene mutation and phenotypic analysis in patients with hypohidrotic ectodermal dysplasia [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 24-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!