Journal of Peking University(Health Sciences) ›› 2017, Vol. 49 ›› Issue (2): 337-343. doi: 10.3969/j.issn.1671-167X.2017.02.027

• Article • Previous Articles     Next Articles

Effect of lowlevel laser irradiation on proliferation and osteogenic differentiation of human adipose-derived stromal cells

SUI Hua-xin, LV Pei-jun△, WANG Yu-guang, WANG Yong, SUN Yu-chun   

  1. (Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Research Center of Engineering and Techno-logy for Digital Dentistry, Ministry of Health & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2017-04-18 Published:2017-04-18
  • Contact: LV Pei-jun E-mail:kqlpj@bjmu.edu.cn
  • Supported by:

    Supported by Project of Chinese Ministry of Education, China (113002A)

Abstract:

Objective:To examine the in vitro effects of low-level laser irradiation (LLLI) on proliferation and differentiation of human adipose-derived stromal cells(hASCs). Methods: Cultured cells were exposed to different doses of LLLI with a semiconductor diode laser (980 nm; 100 mW-12 W power output). The effects of laser on proliferation were assessed daily up to seven days of culture in cells irradiated for four consecutive days with laser doses of 2, 4, 6 or 8 J/cm2, the cells without irradiation were used as controls. Half of the cells were changed to osteogenic medium (OM) when they had grown to 70% confluence. The hASCs both with and without osteogenic supplements were divided into three groups, and each group was irradiated at doses of 0, 2 and 4 J/cm2. In order to examine the in vitro effects of LLLI on osteogenic differentiation of hASCs, the alkaline phosphatase activity was assessed on day 7, and alizarin red staining (AR-S) and quantitative detection were assessed on days 14 and 21. The expression of osteoblast master genes (ALP and Runx2) were tested on days 7 and 14.  Results: The proliferation medium(PM)+LLLI4 J/cm2 group had the highest multiplication rate. In the groups with osteogenic supplements, LLLI increased alkaline phosphatase activity and mineralized nodule formation, and stimulated the expression of ALP and Runx2. Furthermore, the effect became more obvious at high dose. Conclusion: Our data demonstrated that hASCs proliferation and osteogenic differentiation were enhanced by LLLI. With the increase of laser dose, the effect of LLLI would be enhanced at first, and then be decreased after reaching a peak.

Key words: SLow-level laser irradiation, Adipose tissue human adipose-derived stromal cells, Cell proliferation, Cell differentiation, Tissue engineering

CLC Number: 

  • R329.471
[1] HUANG Li-dong,GONG Wei-yu,DONG Yan-mei. Effects of bioactive glass on proliferation, differentiation and angiogenesis of human umbilical vein endothelial cells [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 371-377.
[2] ZHANG Sheng-nan,AN Na,OUYANG Xiang-ying,LIU Ying-jun,WANG Xue-kui. Role of growth arrest-specific protein 6 in migration and osteogenic differentiation of human periodontal ligament cells [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 9-15.
[3] Mei WANG, Bo-wen LI, Si-wen WANG, Yu-hua LIU. Preparation and osteogenic effect study of small intestinal submucosa sponge [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 952-958.
[4] Jing XIE,Yu-ming ZHAO,Nan-quan RAO,Xiao-tong WANG,Teng-jiao-zi FANG,Xiao-xia LI,Yue ZHAI,Jing-zhi LI,Li-hong GE,Yuan-yuan WANG. Comparative study of differentiation potential of mesenchymal stem cells derived from orofacial system into vascular endothelial cells [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 900-906.
[5] Chen LIANG,Wei-yu ZHANG,Hao HU,Qi WANG,Zhi-wei FANG,Ke-xin XU. Comparison of effectiveness and complications between two different methods of augmentation cystoplasty [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 293-297.
[6] Rong LI,Ke-long CHEN,Yong WANG,Yun-song LIU,Yong-sheng ZHOU,Yu-chun SUN. Establishment of a 3D printing system for bone tissue engineering scaffold fabrication and the evaluation of its controllability over macro and micro structure precision [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 115-119.
[7] SUI Hua-xin, LV Pei-jun, WANG Yong, FENG Yu-chi. Effects of low level laser irradiation on the osteogenic capacity of sodium alginate/gelatin/human adipose-derived stem cells 3D bio-printing construct [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 868-875.
[8] WANG Zi-cheng, CHENG Li, LV Tong-de, SU Li, LIN Jian, ZHOU Li-qun. Inflammatory priming adipose derived stem cells significantly inhibit the proliferation of peripheral blood mononuclear cells [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 590-594.
[9] TANG Xu, ZHAO Wei-hong, SONG Qin-qin, YIN Hua-qi, DU Yi-qing, SHENG Zheng-zuo, WANG Qiang, ZHANG Xiao-wei, LI Qing, LIU Shi-jun, XU Tao. Influence of SOX10 on the proliferation and invasion of prostate cancer cells [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 602-606.
[10] GONG Wei-yu, LIU Shao-qing, DONG Yan-mei, GAO Xue-jun, CHEN Xiao-feng. Nano-sized bioactive glass enhances osteogenesis of critical bone defect in rabbits#br# [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 42-48.
[11] CHEN Wei, HU Fan-lei, LIU Hong-jiang, XU Li-ling, LI Ying-ni, LI Zhan-guo. Myeloid-derived suppressor cells promoted autologous B cell proliferation in rheumatoid arthritis [J]. Journal of Peking University(Health Sciences), 2017, 49(5): 819-823.
[12] CAI Yi, GUO Hao, LI Han-zhong, WANG Wen-da, ZHANG Yu-shi. MicroRNA differential expression profile in tuberous sclerosis complex cell line TSC2-/- MEFs and normal cell line TSC2+/+ MEFs [J]. Journal of Peking University(Health Sciences), 2017, 49(4): 580-584.
[13] GAO Xiang, CHEN Xiang-mei, ZHANG Ting, ZHANG Jing, CHEN Mo, GUO Zheng--yang, SHI Yan-yan, LU Feng-min, DING Shi-gang. Relationship between macrophage capping protein and gastric cancer cell’s proliferation and migration ability [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 489-494.
[14] YANG Di, XU Jun-hui, DENG Fu-rong△, GUO Xin-biao . Effects of silver nanoparticle on hemichannel activation and anti-proliferation in HaCaT cells [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 371-375.
[15] SIMA Zi-han, HONG Ying-ying, LI Tie-jun△. Effects of PTCH1 mutations on the epithelial proliferation derived from keratocystic odontogenic tumour [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 522-526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 456 -458 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 125 -128 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 135 -140 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 217 -220 .
[5] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 52 -55 .
[6] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 109 -111 .
[7] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 297 -301 .
[8] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 599 -601 .
[9] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 516 -520 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 304 -309 .