Journal of Peking University(Health Sciences) ›› 2014, Vol. 46 ›› Issue (5): 691-697.

• Articles • Previous Articles     Next Articles

Hot spot mutation screening of RYR1 gene in diagnosis of congenital myopathies

CHANG Xing-zhi1, JIN Yi-wen1, WANG Jing-min1, YUAN Yun2, XIONG Hui1, WANG Shuang1, QIN Jiong1△   

  1. (1.Department of Pediatrics, 2. Department of Neurology, Peking University First Hospital, Beijing 100034, China)
  • Online:2014-10-18 Published:2014-10-18

Abstract: Objective:To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease.Methods: Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients. Results: All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed “myogenic” features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients’ (Patient 3) asymptomatic father.Conclusion: Congenital myopathies in the different subtype have the similar clinical manifestations, signs, enzyme detection and electromyography changes. Muscle biopsy plays an important role in the selection of genes to be detected. Hot spot mutation in C-terminal of the RYR1 gene can only be identified in patients with central core disease, so we suggest this hot spot gene mutation screening apply to the suspicious patient with central core disease only.

Key words: Myopathies, structural, congenital, Ryanodine receptor calcium release channel, Mutation

[1] Yun-fei SHI,Hao-jie WANG,Wei-ping LIU,Lan MI,Meng-ping LONG,Yan-fei LIU,Yu-mei LAI,Li-xin ZHOU,Xin-ting DIAO,Xiang-hong LI. Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 521-529.
[2] Yan XIONG,Bo ZHANG,Li-gong NIE,Shi-kai WU,Hu ZHAO,Dong LI,Ji-ting DI. Thoracic SMARCA4-deficient undifferentiated tumor-pathological diagnosis and combined immune checkpoint inhibitor treatment [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 351-356.
[3] Qiu-jun ZHOU,Pan GONG,Xian-ru JIAO,Zhi-xian YANG. Clinical and molecular genetic analysis of Angelman syndrome with oculocutaneous albinism type 2: A case report and literature review [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 181-185.
[4] Xiao-jing CHENG,Dong JIANG,Lian-hai ZHANG,Jiang-hua WANG,Ya-zhen LI,Jia-hui ZHAI,Bao-qi YAN,Lu-lu ZHANG,Xing-wang XIE,Zi-yu LI,Jia-fu JI. Preclinical study of T cell receptor specifically reactive with KRAS G12V mutation in the treatment of malignant tumors [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 884-895.
[5] Cai-peng QIN,Yu-xuan SONG,Meng-ting DING,Fei WANG,Jia-xing LIN,Wen-bo YANG,Yi-qing DU,Qing LI,Shi-jun LIU,Tao XU. Establishment of a mutation prediction model for evaluating the efficacy of immunotherapy in renal carcinoma [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 663-668.
[6] Xi CHEN,Si-yue WANG,En-ci XUE,Xue-heng WANG,He-xiang PENG,Meng FAN,Meng-ying WANG,Yi-qun WU,Xue-ying QIN,Jing LI,Tao WU,Hong-ping ZHU,Jing LI,Zhi-bo ZHOU,Da-fang CHEN,Yong-hua HU. Exploring the association between de novo mutations and non-syndromic cleft lip with or without palate based on whole exome sequencing of case-parent trios [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 387-393.
[7] FENG Ke,NI Jing-jing,XIA Yan-qing,QU Xiao-wei,ZHANG Hui-juan,WAN Feng,HONG Kai,ZHANG Cui-lian,GUO Hai-bin. Genetic analysis of three cases of acephalic spermatozoa syndrome caused by SUN5 mutation and the outcome of assisted reproductive technology [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 803-807.
[8] WU Jun-yi,YU Miao,SUN Shi-chen,FAN Zhuang-zhuang,ZHENG Jing-lei,ZHANG Liu-tao,FENG Hai-lan,LIU Yang,HAN Dong. Detection of EDA gene mutation and phenotypic analysis in patients with hypohidrotic ectodermal dysplasia [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 24-33.
[9] CAO Ze,WANG Le-tong,LIU Zhen-ming. Homologous modeling and binding ability analysis of Spike protein after point mutation of severe acute respiratory syndrome coronavirus 2 to receptor proteins and potential antiviral drugs [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 150-158.
[10] Yi BAO,Juan-fen MO. Concordant point mutation of ETS-related gene (ERG) in tumor tissues from a synchronous multiple primary lung cancer: A case report [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 971-974.
[11] Zhu YOU,Li-li XU,Xue-fen LI,Jian-yun ZHANG,Jing DU,Li-sha SUN. BRAF gene mutations in ameloblastic fibromas [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 4-5.
[12] Hao WANG,Yang LIU,Hao-chen LIU,Dong HAN,Hai-lan FENG. Detection and functional analysis of BMP2 gene mutation in patients with tooth agenesis [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 9-15.
[13] Rui LIU,Jia-yu ZHAI,Xiang-yuan LIU,Zhong-qiang YAO. Progressive pseudorheumatoid dysplasia misdiagnosed asankylosing spondylitis: a case report [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1112-1116.
[14] ZHANG Xiao-dong, LIU De-ruo. Correlation between the new lung adenocarcinoma classification and epidermal growth factor receptor mutation [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 640-644.
[15] YANG Xi-ying, ZHU Ling-ping, LIU Xue-qin, ZHANG Chun-yu, YAO Yong, WU Ye. Genetic diagnosis of Caroli syndrome with autosomal recessive polycystic kidney disease: a case report and literature review [J]. Journal of Peking University(Health Sciences), 2018, 50(2): 335-339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!