Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (1): 68-76. doi: 10.19723/j.issn.1671-167X.2022.01.011

Previous Articles     Next Articles

Analysis of etiological characteristics and establishment of prediction model of postoperative infections in patients undergoing oral squamous cell carcinoma surgery with free flap reconstruction

SU Jun-qi1,SONG Yang1,XIE Shang2,()   

  1. 1. Department of Clinical Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
    2. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
  • Received:2021-10-10 Online:2022-02-18 Published:2022-02-21
  • Contact: Shang XIE E-mail:xs2013@hsc.pku.edu.cn
  • Supported by:
    Nation Natural Science Foundation of China(82002878);Peking University Hospital of Stomatology Young Foundation(YS020219)

RICH HTML

  

Abstract:

Objective: To investigate the characteristics of pathogen infection and to establish a prediction model of infections in oral squamous cell carcinoma patients undergoing surgery with free flap reconstruction. Methods: The retrospective cohort study consisted of 1 596 patients undergoing tumor resection and free flap reconstruction for oral squamous cell carcinoma from January 2018 to December 2020. According to the postoperative infection, the patients were divided into the infected group (n=154) and non-infected group (n=1 442). The characteristics of pathogens were analyzed in the infected patients. The primary outcome variable was postoperative infection, and Logistic regression was used to determine risk factors of the infection. The prediction model was established and the discriminatory accuracy of the model was evaluated using receiver operating characteristic (ROC) curve. Results: Totally 154 cases were infected in the 1 596 cases undergoing surgery with free flap reconstruction, and the infection rate was 9.65%. The most frequent sites of infection were the surgical wound and respiratory tract. A total of 268 pathogens were isolated and cultured, including 240 strains of Gram-negative bacteria, accounting for 89.55%, mainly Pseudomonas aeruginosa and Klebsiella pneumoniae; 23 strains of Gram-positive bacteria, accounting for 8.58%, mainly Enterococcus faecalis and Staphylococcus aureus; and 5 strains of fungi, accounting for 1.87%. The isolated Pseudomonas aeruginosa had high resistant rate to imipenem and meropenem, and was sensitive to antibiotics, such as ciprofloxacin. The isolated Staphylococcus aureus had high resistant rate to erythromycin and clindamycin, and was sensitive to vancomycin. According to the multivariate Logistic analysis, four independent variables were significantly associated with an increased risk of postoperative infection (P<0.05): clinical N category≥1, the American Society of Anesthesiologists (ASA) grade ≥2, tracheotomy and length of hospital stay >13 d. The prediction model was established based on these factors and the expression of the risk prediction model was as follows: predicted probability value P=1/(1+e-a), a=-0.803+0.674×(clinical N category ≥1)+0.518×(the ASA grade ≥2)+0.918×(tracheotomy)+1.581×(length of hospital stay >13 d), Hosmer-Lemeshow χ2=10.647, P=0.223, the degree of fitting of the model was good. The area under the ROC curve was 0.818 and 95%CI of the model for predicting infection was 0.789-0.846. Conclusion: Oral squamous cell carcinoma patients undergoing surgery with free flap reconstruction are prone to have a high incidence of postoperative infection and Gram-negative bacteria are the main pathogens causing an infection. The established prediction model is of good predictive effect. Rational antimicrobial use coupled with awareness of infection control measures is paramount to reduce the incidence of postoperative infection in the oral squamous cell carcinoma patients undergoing surgery with free flap reconstruction.

Key words: Squamous cell carcinoma, Oral surgical procedures, Pathogen, Drug resistance, bacterial, Risk factors

CLC Number: 

  • R782.3

Table 1

Distribution and constituent ratio of the infection sites in oral squamous cell carcinoma patients"

Infection site n Constituent ratio/%
Surgical wound 91 59.09
Respiratory tract 59 38.31
Skin and soft tissue 3 1.95
Urinary tract 1 0.65
Total 154 100.00

Table 2

Distribution and constituent ratio of the pathogens in oral squamous cell carcinoma patients"

Pathogenic bacteria No. of strains Constituent ratio/%
Gram-negative bacteria
Pseudomonsa aeruginosa 87 32.46
Klebsiella pneumoniae 56 20.90
Enterobacter cloacae 23 8.58
Acinetobacter baumanii 20 7.46
Serratia marcescens 12 4.48
Escherichia coli 12 4.48
Klebsiella oxytoca 7 2.61
Proteus mirabilis 6 2.24
Stenotrophomonas maltophilia 4 1.49
Morganella morganii 3 1.12
Enterobacter aerogenes 3 1.12
Others 7 2.61
Gram-positive bacteria
Enterococcus faecalis 9 3.36
Staphylococcus aureus 8 2.99
Staphylococcus epidermidis 3 1.12
Streptococcus penumoniae 2 0.75
Streptococcus agalactiae 1 0.37
Fungi
Candida albicans 3 1.12
Candida tropicalis 1 0.37
Candida krusei 1 0.37
Total 268 100.00

Table 3

Drug resistance of major Gram-negative bacteria to antibacterial drug in oral squamous cell carcinoma patients"

Antibacterial drug Pseudomonsa
aeruginosa (n=87)
Klebsiella
pneumoniae (n=56)
Enterobacter
cloacae (n=23)
Acinetobacter
baumanii (n=20)
No. of resistant
strains
DRR/% No. of resistant
strains
DRR/% No. of resistant
strains
DRR/% No. of resistant
strains
DRR/%
Cephalosporin class
Cefazolin - - 19 33.93 - - - -
Cefoxitin - - 7 12.50 - - - -
Cefuroxime - - 21 37.50 - - - -
Cefoperazone - - 16 28.57 5 21.74 - -
Aztreonam 4 4.60 7 12.50 6 26.09 - -
Cefotaxime - - 17 30.36 7 30.43 0 0
Ceftriaxome - - 17 30.36 6 26.09 0 0
Ceftazidime 3 3.45 4 7.14 7 30.43 0 0
Cefepime 0 0 7 12.50 3 13.04 0 0
Penicillin class
Piperacillin 3 3.45 21 37.50 6 26.09 0 0
Carbapenem class
Imipenem 10 11.49 0 0 0 0 0 0
Meropenem 6 6.90 0 0 0 0 0 0
Cephalosporin-enzyme inhibitors
Ampicillin-sulbactam - - 7 12.50 - - 1 5.00
Piperacillin-tazobactam 4 4.60 1 1.79 1 4.35 0 0
Aminoglycosides class
Gentamicin 2 2.30 11 19.64 3 13.04 0 0
Amikacin 1 1.15 0 0 0 0 0 0
Quinolone class
Levofloxacin 1 1.15 3 5.36 1 4.35 0 0
Ciprofloxacin 0 0 - - - - - -
Sulfa class
Trimethoprim-sulfamethoxazole - - 19 33.93 3 13.04 2 10.00
Tetracycline class
Minocycline - - 13 23.21 1 4.35 1 5.00

Table 4

Drug resistance of major Gram-positive bacteria to antibacterial drug in oral squamous cell carcinoma patients"

Antibacterial drug Enterococcus faecalis (n=9) Staphylococcus aureus (n=8) Staphylococcus epidermidis (n=3)
No. of resistant strains DRR/% No. of resistant strains DRR/% No. of resistant strains DRR/%
Penicillin 0 0 8 100.00 3 100.00
Cefoxitin - - 1 12.50 3 100.00
Ampicillin 0 0 - - - -
Linezolid 0 0 0 0 0 0
Teicoplanin 0 0 0 0 0 0
Levofloxacin 0 0 2 25.00 1 33.33
Gentamicin - - 0 0 1 33.33
High-dose gentamicin 1 11.11 - - - -
Erythromycin 6 66.67 4 50.00 2 66.67
Clindamycin - - 4 50.00 1 33.33
Trimethoprim-sulfamethoxazole - - 0 0 2 66.67
Minocycline - - 0 0 0 0
Vancomycin 0 0 0 0 0 0

Table 5

Univariate and multivariate Logistic regression analysis of factors predicting postoperative infection in oral squamous cell carcinoma patients"

Variables Postoperative infection Univariate analysis Multivariate analysis
Yes No
n % n % OR 95%CI P OR 95%CI P
Gender
Male 116 75.3 892 61.9 1.88 1.3-2.8 0.001
Female 38 24.7 550 38.1
Age/years
>60 65 42.2 696 48.3 0.78 0.6-1.1 0.153
≤60 89 57.8 746 51.7
BMI/(kg/m2)
≤23 53 34.4 339 23.5 1.71 1.2-2.4 0.003
>23 101 65.6 1 103 76.5
Clinical T category
T3-T4 120 77.9 603 41.8 4.91 3.3-7.3 <0.001
T1-T2 34 22.1 839 58.2
Clinical N category
N+ 100 64.9 495 34.3 3.54 2.5-5.0 <0.001 1.961 1.3-2.9 0.001
N0 54 35.1 947 65.7
ASA score
≥Ⅱ 132 85.7 1 086 75.3 1.97 1.2-3.1 0.005 1.679 1.0-2.8 0.043
<Ⅱ 22 14.3 356 24.7
Preoperative WBC count
>6.3×109/L 94 61.0 697 48.3 1.68 1.2-2.4 0.003
≤6.3×109/L 60 39.0 745 51.7
Preoperative serum Alb/(g/L)
≤41 98 63.6 757 52.5 1.58 1.1-2.2 0.009
>41 56 36.4 685 47.5
Diabetes mellitus
Yes 25 16.2 184 12.8 1.33 0.8-2.1 0.226
No 129 83.8 1 258 87.2
Hypertension
Yes 52 33.8 431 29.9 1.20 0.8-1.7 0.320
No 102 66.2 1 011 70.1
Tumor diameter/cm
>3 106 68.8 533 37.0 3.77 2.6-5.4 <0.001
≤3 48 31.2 909 63.0
Bone resection
Yes 116 75.3 803 55.7 2.43 1.7-3.5 <0.001
No 38 24.7 638 44.3
Type of free-flap reconstruction
Osseous 47 30.5 251 17.4 2.08 1.4-3.0 <0.001
Non-osseous 107 69.5 1 191 82.6
Neck dissection
Bilateral 54 35.1 251 17.4 2.56 1.8-3.7 <0.001
Ipsilateral 100 64.9 1 190 82.6
Titanium plate reconstruction
Yes 83 53.9 442 30.7 2.65 1.9-3.7 <0.001
No 71 46.1 1 000 69.3
Tracheotomy
Yes 126 81.8 569 39.5 6.89 4.5-10.5 <0.001 2.503 1.5-4.1 <0.001
No 28 18.2 871 60.5
Operative duration/min
>260 125 81.2 667 46.3 5.01 3.3-7.6 <0.001
≤260 29 18.8 775 53.7
Blood loss/mL
>200 109 70.8 555 38.5 3.87 2.7-5.6 <0.001
≤200 45 29.2 887 61.5
Length of hospital stay/d
>13 135 87.7 596 41.3 10.09 6.2-16.5 <0.001 4.862 2.9-8.3 <0.001
≤13 19 12.3 846 58.7

Table 6

The risk prediction model for postoperative infection in oral squamous cell carcinoma patients undergoing free flap reconstruction"

Characteristic β SE Wald OR 95%CI P
Clinical N category 0.674 0.195 11.963 1.961 1.339-2.873 0.001
ASA score 0.518 0.256 4.088 1.679 1.016-2.773 0.043
Tracheotomy 0.918 0.257 12.782 2.503 1.514-4.140 <0.001
Length of hospital stay 1.581 0.270 34.194 4.862 2.862-8.261 <0.001

Figure 1

ROC curve analysis of the risk factors for predicting infection in oral squamous cell carcinoma patients undergoing free flap reconstruction ROC, receiver operating characteristic; AUC, area under the curve; SE, standard error."

[1] Panarese I, Aquino G, Ronchi A, et al. Oral and oropharyngeal squamous cell carcinoma: Prognostic and predictive parameters in the etiopathogenetic route[J]. Expert Rev Anticancer ther, 2019, 19(2):105-119.
doi: 10.1080/14737140.2019.1561288
[2] Cannon RB, Houlton JJ, Mendez E, et al. Methods to reduce postoperative surgical site infections after head and neck oncology surgery[J]. Lancet Oncol, 2017, 18(7):e405-e413.
doi: 10.1016/S1470-2045(17)30375-3
[3] McBain AJ, Sissons C, Ledder RG, et al. Development and cha-racterization of a simple perfused oral microcosm[J]. J Appl Microbiol, 2005, 98(3):624-634.
pmid: 15715865
[4] Jansisyanont P, Kasemsai W, Bamroong P. Factors related to the treatment outcome of maxillofacial fascia space infection[J]. J Oral Max Surg Med Pathol, 2015, 27(4):458-464.
[5] 张建丽, 刘玉坤, 任起辉, 等. 行口腔颌面外科术患者术后感染病原学特征及相关因素分析[J]. 中华医院感染学杂志, 2018, 28(3):440-443.
[6] 李月莉, 苏翠霞, 高凤蕊, 等. 口腔颌面外科患者气管切开术后肺部感染的病原学分析及干预对策[J]. 中华医院感染学杂志, 2014, 24(5):1239-1241.
[7] Manchon A, Prados-Frutos JC, Rueda-Rodriguez C, et al. Anti-biotic release from calcium phosphate materials in oral and maxillofacial surgery: Molecular, cellular and pharmaceutical aspects[J]. Curr Pharm Biotechnol, 2017, 18(1):52-63.
doi: 10.2174/1389201018666161114145827
[8] 刘登峰, 孙仁义, 肖进, 等. 口腔颌面外科患者医院感染病原菌分布及耐药性分析[J]. 中华医院感染学杂志, 2014, 24(23):5928-5930.
[9] 李新芳, 顾华芳, 顾永华, 等. 肠杆菌科细菌耐药性与抗菌药物使用强度的相关性分析[J]. 中华医院感染学杂志, 2016, 26(1):16-18.
[10] Batard E, Ollivier F, Boutoille D, et al. Relationship between hospital antibiotic use and quinolone resistance in Escherichia coli[J]. Int J Infect Dis, 2013, 17(4):e254-e258.
doi: 10.1016/j.ijid.2012.10.005
[11] 解泽强, 菅记涌, 孙盼盼, 等. 2010—2015年医院铜绿假单胞菌感染分布及耐药性分析[J]. 中华医院感染学杂志, 2017, 27(3):498-500.
[12] 张艳, 魏华波, 王志强, 等. 医院感染铜绿假单胞菌的分布及耐药性研究[J]. 中华医院感染学杂志, 2014, 24(13):3139-3141.
[13] 侯飞, 王玲, 崔伟锋, 等. 铜绿假单胞菌医院感染的危险因素及耐药性分析[J]. 中华医院感染学杂志, 2013, 23(16):4050-4052.
[14] Zhao Y, Guo L, Li J, et al. Molecular epidemiology, antimicro-bial susceptibility, and pulsed-field gel electrophoresis genotyping of Pseudomonas aeruginosa isolates from mink[J]. Can J Vet Res, 2018, 82(4):256-263.
[15] Shanthi J, Pazhanimurugan R, Gopikrishnan V, et al. Mechanism of drug resistance, characterization of plasmid-borne determinants and transformation study in P. aeruginosa from burn and ICU units-its susceptibility pattern[J]. Burns, 2013, 39(4):643-649.
doi: 10.1016/j.burns.2012.08.012 pmid: 22980776
[16] 郑百慧, 龚春梅, 黎敏, 等. 呼吸与危重症医学病房分离的碳青霉烯耐药铜绿假单胞菌的分子流行病学[J]. 中华医院感染学杂志, 2020, 30(17):2610-2614.
[17] Oliveira MC, Oliveira CR, Gonçalves KV, et al. Enterobacte-riaceae resistant to third generation cephalosporins upon hospital admission: Risk factors and clinical outcomes[J]. Braz J Infect Dis, 2015, 19(3):239-245.
doi: 10.1016/j.bjid.2015.01.006
[18] Guo Z, Zhang J, Gong Z, et al. Correlation of factors associated with postoperative infection in patients with malignant oral and maxillofacial tumours: A Logistic regression analysis[J]. Br J Oral Maxillofac Surg, 2019, 57(5):460-465.
doi: S0266-4356(19)30123-8 pmid: 31006505
[19] Anehosur VS, Karadiguddi P, Joshi VK, et al. Elective tracheostomy in head and neck surgery: Our experience[J]. J Clin Diagn Res, 2017, 11(5): ZC36-ZC39.
[20] Goetz C, Burian NM, Weitz J, et al. Temporary tracheotomy in microvascular reconstruction in maxillofacial surgery: Benefit or threat?[J]. J Craniomaxillofac Surg, 2019, 47(4):642-646.
doi: 10.1016/j.jcms.2019.01.017
[21] Li L, Yuan W, Zhang S, et al. Analysis of risk factors for pneumonia in 482 patients undergoing oral cancer surgery with tracheo-tomy[J]. J Oral Maxillofac Surg, 2016, 74(2):415-419.
doi: 10.1016/j.joms.2015.08.018
[22] Xu J, Hu J, Yu P, et al. Perioperative risk factors for postoperative pneumonia after major oral cancer surgery: A retrospective analysis of 331 cases[J]. PLoS One, 2017, 12(11):e0188167.
doi: 10.1371/journal.pone.0188167
[23] Algar FJ, Alvarez A, Salvatierra A, et al. Predicting pulmonary complications after pneumonectomy for lung cancer[J]. Eur J Cardiothorac Surg, 2003, 23(2):201-208.
doi: 10.1016/S1010-7940(02)00719-4
[24] Maeng SH, Yoo HS, Choi SH, et al. Impact of parainfluenza virus infection in pediatric cancer patients[J]. Pediatr Blood Cancer, 2012, 59(4):708-710.
doi: 10.1002/pbc.23390 pmid: 22095941
[25] Liu P, Li X, Luo M, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: A meta-analysis[J]. Microb Drug Resist, 2018, 24(2):190-198.
doi: 10.1089/mdr.2017.0061
[26] Zhu WM, Yuan Z, Zhou HY. Risk factors for carbapenem-resis-tant Klebsiella pneumoniae infection relative to two types of control patients: A systematic review and meta-analysis[J]. Antimicrob Resist Infect Control, 2020, 9(1):23.
doi: 10.1186/s13756-020-0686-0
[1] Zhicun LI, Tianyu WU, Lei LIANG, Yu FAN, Yisen MENG, Qian ZHANG. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 896-901.
[2] Ye YAN,Xiaolong LI,Haizhui XIA,Xuehua ZHU,Yuting ZHANG,Fan ZHANG,Ke LIU,Cheng LIU,Lulin MA. Analysis of risk factors for long-term overactive bladder after radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 589-593.
[3] Yan CHEN,Kuangmeng LI,Kai HONG,Shudong ZHANG,Jianxing CHENG,Zhongjie ZHENG,Wenhao TANG,Lianming ZHAO,Haitao ZHANG,Hui JIANG,Haocheng LIN. Retrospective study on the impact of penile corpus cavernosum injection test on penile vascular function [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 680-686.
[4] Bo PANG,Tongjun GUO,Xi CHEN,Huaqi GUO,Jiazhang SHI,Juan CHEN,Xinmei WANG,Yaoyan LI,Anqi SHAN,Hengyi YU,Jing HUANG,Naijun TANG,Yan WANG,Xinbiao GUO,Guoxing LI,Shaowei WU. Personal nitrogen oxides exposure levels and related influencing factors in adults over 35 years old in Tianjin and Shanghai [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 700-707.
[5] Jing HE,Zhongze FANG,Ying YANG,Jing LIU,Wenyao MA,Yong HUO,Wei GAO,Yangfeng WU,Gaoqiang XIE. Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 722-728.
[6] Shan CAI,Yihang ZHANG,Ziyue CHEN,Yunfe LIU,Jiajia DANG,Di SHI,Jiaxin LI,Tianyu HUANG,Jun MA,Yi SONG. Status and pathways of factors influencing physical activity time among elementary and junior high school students in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 403-410.
[7] Zuhong ZHANG,Tianjiao CHEN,Jun MA. Associations between puberty timing and cardiovascular metabolic risk factors among primary and secondary students [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 418-423.
[8] Yuting LIN,Huali WANG,Yu TIAN,Litong GONG,Chun CHANG. Factors influencing cognitive function among the older adults in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 456-461.
[9] Jinrong ZHU,Yana ZHAO,Wei HUANG,Weiwei ZHAO,Yue WANG,Song WANG,Chunyan SU. Clinical characteristics of COVID-19 infection in patients undergoing hemodialysis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 267-272.
[10] Zhanhong LAI,Jiachen LI,Zelin YUN,Yonggang ZHANG,Hao ZHANG,Xiaoyan XING,Miao SHAO,Yuebo JIN,Naidi WANG,Yimin LI,Yuhui LI,Zhanguo LI. A unicenter real-world study of the correlation factors for complete clinical response in idiopathic inflammatory myopathies [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 284-292.
[11] Xiaoqian SI,Xiujuan ZHAO,Fengxue ZHU,Tianbing WANG. Risk factors for acute respiratory distress syndrome in patients with traumatic hemorrhagic shock [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 307-312.
[12] Junqi SU,Xiaoying WANG,Zhiqiang SUN. Establishment and verification of a prognostic nomogram for survival of tongue squamous cell carcinoma patients who underwent cervical dissection [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 120-130.
[13] Yangyang LI,Lin HOU,Zijun MA,Shanyamei HUANG,Jie LIU,Chaomei ZENG,Jiong QIN. Association of pregnancy factors with cow's milk protein allergy in infants [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 144-149.
[14] Xiaoqiang LIU,Yin ZHOU. Risk factors of perioperative hypertension in dental implant surgeries with bone augmentation [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 93-98.
[15] Liang LUO,Yun LI,Hong-yan WANG,Xiao-hong XIANG,Jing ZHAO,Feng SUN,Xiao-ying ZHANG,Ru-lin JIA,Chun LI. Anti-endothelial cell antibodies in predicting early miscarriage [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1039-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!