北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 819-822. doi: 10.19723/j.issn.1671-167X.2021.05.001

• 述评 •    下一篇

解析与重塑软骨组织修复再生微环境

敖英芳(),曹宸喜   

  1. 北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京 100191
  • 收稿日期:2021-07-15 出版日期:2021-10-18 发布日期:2021-10-11
  • 通讯作者: 敖英芳 E-mail:aoyingfang@163.com

  • Received:2021-07-15 Online:2021-10-18 Published:2021-10-11

关键词: 软骨, 损伤, 再生, 组织工程, 细胞微环境

中图分类号: 

  • R681.3
[1] Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3):413-425.
doi: 10.1016/j.csm.2017.02.001
[2] Simon TM, Jackson DW. Articular cartilage: Injury pathways and treatment options [J]. Sports Med Arthrosc Rev, 2018, 26(1):31-39.
doi: 10.1097/JSA.0000000000000182
[3] Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol, 2015, 11(1):21-34.
doi: 10.1038/nrrheum.2014.157
[4] Oldershaw RA. Cell sources for the regeneration of articular cartilage: The past, the horizon and the future [J]. Int J Exp Pathol, 2012, 93(6):389-400.
doi: 10.1111/j.1365-2613.2012.00837.x pmid: 23075006
[5] Schindler OS. Current concepts of articular cartilage repair [J]. Acta Orthop Belg, 2011, 77(6):709-726.
pmid: 22308614
[6] Hirano Y, Ishiguro N, Sokabe M, et al. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type Ⅰ collagen gel [J]. J Biotechnol, 2008, 133(2):245-252.
pmid: 17868945
[7] Liu Q, Hu X, Zhang X, et al. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression [J]. Sci Rep, 2016, 6:37268.
doi: 10.1038/srep37268
[8] Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis [J]. Mol Ther Nucleic Acids, 2017, 7:223-230.
doi: 10.1016/j.omtn.2017.04.004
[9] Liu Q, Hu X, Zhang X, et al. The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis [J]. Mol Ther, 2016, 24(10):1726-1733.
doi: 10.1038/mt.2016.151
[10] Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis [J]. Mol Ther, 2015, 23(8):1331-1340.
doi: 10.1038/mt.2015.61
[11] Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 “Sponge” in human cartilage degradation [J]. Sci Rep, 2016, 6:22572.
doi: 10.1038/srep22572
[12] Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis [J]. Arthritis Rheumatol, 2014, 66(4):969-978.
doi: 10.1002/art.38309
[13] Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development [J]. Nat Commun, 2019, 10(1):1914.
doi: 10.1038/s41467-019-09839-x
[14] Cheng J, Hu X, Dai L, et al. Inhibition of transforming growth factor beta-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis [J]. Sci Rep, 2016, 6:34497.
doi: 10.1038/srep34497 pmid: 27682596
[15] Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7 [J]. Front Cell Dev Biol, 2021, 9:638382.
doi: 10.3389/fcell.2021.638382 pmid: 33937236
[16] Pi Y, Zhang X, Shao Z, et al. Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice [J]. Gene Ther, 2015, 22(6):439-448.
doi: 10.1038/gt.2015.16 pmid: 25876463
[17] Pi Y, Zhang X, Shi J, et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display [J]. Biomaterials, 2011, 32(26):6324-6332.
doi: 10.1016/j.biomaterials.2011.05.017
[18] Ogura T, Bryant T, Merkely G, et al. Survival analysis of revision autologous chondrocyte implantation for failed ACI [J]. Am J Sports Med, 2019, 47(13):3212-3220.
doi: 10.1177/0363546519876630
[19] Shao Z, Zhang X, Pi Y, et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo [J]. Biomate-rials, 2012, 33(12):3375-3387.
[20] Huang H, Zhang X, Hu X, et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration [J]. Biomaterials, 2014, 35(36):9608-9619.
doi: 10.1016/j.biomaterials.2014.08.020
[21] Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration [J]. Biomaterials, 2021, 269:120539.
doi: 10.1016/j.biomaterials.2020.120539
[22] Zhang W, Ling C, Zhang A, et al. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration [J]. Bioact Mater, 2020, 5(4):832-843.
doi: 10.1016/j.bioactmat.2020.05.003 pmid: 32637747
[23] Hu X, Zhu J, Li X, et al. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo [J]. Biomaterials, 2015, 52:441-451.
doi: 10.1016/j.biomaterials.2015.02.050
[24] Zhang X, Zheng Z, Liu P, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair [J]. Biomaterials, 2008, 29(35):4616-4629.
doi: 10.1016/j.biomaterials.2008.07.051 pmid: 18793797
[25] Dai L, He Z, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: A technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture [J]. Am J Sports Med, 2014, 42(3):583-591.
doi: 10.1177/0363546513518415
[26] Dai L, He Z, Jiang Y, et al. One-step strategy for cartilage repair using acellular bone matrix scaffold based in situ tissue engineering technique in a preclinical minipig model [J]. Am J Transl Res, 2019, 11(10):6650-6659.
[27] Meng Q, Man Z, Dai L, et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration [J]. Sci Rep, 2015, 5:17802.
doi: 10.1038/srep17802
[28] Meng Q, Hu X, Huang H, et al. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models [J]. Acta Biomater, 2017, 53:279-292.
doi: 10.1016/j.actbio.2017.01.055
[29] Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bioink in extrusion-based 3D cell printing [J]. Biofabrication, 2020, 12(4):045011.
doi: 10.1088/1758-5090/aba411
[30] Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo [J]. Adv Mater, 2017, 29():1701089.1-7.
[1] 高亚东,朱安,李璐迪,张涛,王硕,单丹萍,李盈姿,王旗. 吴茱萸碱对HepG2细胞毒性及其机制[J]. 北京大学学报(医学版), 2021, 53(6): 1107-1114.
[2] 蒋艳芳,王健,王永健,刘佳,裴殷,刘晓鹏,敖英芳,马勇. 前交叉韧带翻修重建术后中长期临床疗效及影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 857-863.
[3] 蒋青,张雨. 新形势下运动损伤特点及细胞生物治疗的应用前景和挑战[J]. 北京大学学报(医学版), 2021, 53(5): 828-831.
[4] 董寒梅,吴睿麒,高冠英,刘镕阁,徐雁. 关节镜下盂唇重建治疗髋关节撞击综合征12例[J]. 北京大学学报(医学版), 2021, 53(5): 1007-1011.
[5] 朱敬先,鲁胜楠,蒋艳芳,姜玲,王健全. 老年肩袖损伤手术患者术前肺功能的影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 902-906.
[6] 尤鹏越,刘玉华,王新知,王思雯,唐琳. 脱细胞猪心包膜生物相容性及成骨性能的体内外评价[J]. 北京大学学报(医学版), 2021, 53(4): 776-784.
[7] 杨渝平,马骁,陈拿云,蒋艳芳,张晓伟,丁中伟,刘涛,敖英芳. 冬奥会雪场医疗站和近地医疗保障医院在滑雪运动伤救治体系中的作用[J]. 北京大学学报(医学版), 2021, 53(3): 580-585.
[8] 耿志宇,高为华,王东信. 全身麻醉气管插管患者术后声带运动不良的临床结局[J]. 北京大学学报(医学版), 2021, 53(2): 337-340.
[9] 杨渝平,马骁,陈拿云,蒋艳芳,张晓伟,丁中伟,敖英芳. 中国崇礼某大型雪场大众滑雪者损伤情况分析[J]. 北京大学学报(医学版), 2021, 53(2): 273-278.
[10] 侯宗辰,敖英芳,胡跃林,焦晨,郭秦炜,黄红拾,任爽,张思,谢兴,陈临新,赵峰,皮彦斌,李楠,江东. 慢性踝关节不稳患者足底压力特征及相关因素分析[J]. 北京大学学报(医学版), 2021, 53(2): 279-285.
[11] 黄丽东,宫玮玉,董艳梅. 生物活性玻璃对人脐静脉血管内皮细胞增殖及成血管的作用[J]. 北京大学学报(医学版), 2021, 53(2): 371-377.
[12] 王思雯,尤鹏越,刘玉华,王新知,唐琳,王梅. 两种可吸收生物膜联合去蛋白牛骨基质植入犬拔牙窝成骨的影像学评价[J]. 北京大学学报(医学版), 2021, 53(2): 364-370.
[13] 杨雪,孙伟,王哲,姬爱平,白洁. 儿童和青少年牙外伤急诊患者临床分析[J]. 北京大学学报(医学版), 2021, 53(2): 384-389.
[14] 赵健芳,李东,安阳. TET蛋白家族与5-羟甲基胞嘧啶在干细胞及再生医学表观遗传调控中的作用[J]. 北京大学学报(医学版), 2021, 53(2): 420-424.
[15] 杨林承,张瑞涛,郭丽君,肖晗,祖凌云,张幼怡,程秦,赵志伶,葛庆岗,高炜. 低氧状态及炎症反应是新型冠状病毒肺炎患者发生急性心肌损伤的危险因素[J]. 北京大学学报(医学版), 2021, 53(1): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[5] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[6] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[7] 董稳, 刘瑞昌, 刘克英, 关明, 杨旭东. 氯诺昔康和舒芬太尼用于颌面外科术后自控静脉镇痛的比较[J]. 北京大学学报(医学版), 2009, 41(1): 109 -111 .
[8] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[9] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .
[10] 李伟军, 邢晓芳, 曲立科, 孟麟, 寿成超. PRL-3基因C104S位点突变体和CAAX缺失体的构建及表达[J]. 北京大学学报(医学版), 2009, 41(5): 516 -520 .