北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 819-822. doi: 10.19723/j.issn.1671-167X.2021.05.001
• 述评 • 下一篇
中图分类号:
[1] |
Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3):413-425.
doi: 10.1016/j.csm.2017.02.001 |
[2] |
Simon TM, Jackson DW. Articular cartilage: Injury pathways and treatment options [J]. Sports Med Arthrosc Rev, 2018, 26(1):31-39.
doi: 10.1097/JSA.0000000000000182 |
[3] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol, 2015, 11(1):21-34.
doi: 10.1038/nrrheum.2014.157 |
[4] |
Oldershaw RA. Cell sources for the regeneration of articular cartilage: The past, the horizon and the future [J]. Int J Exp Pathol, 2012, 93(6):389-400.
doi: 10.1111/j.1365-2613.2012.00837.x pmid: 23075006 |
[5] |
Schindler OS. Current concepts of articular cartilage repair [J]. Acta Orthop Belg, 2011, 77(6):709-726.
pmid: 22308614 |
[6] |
Hirano Y, Ishiguro N, Sokabe M, et al. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type Ⅰ collagen gel [J]. J Biotechnol, 2008, 133(2):245-252.
pmid: 17868945 |
[7] |
Liu Q, Hu X, Zhang X, et al. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression [J]. Sci Rep, 2016, 6:37268.
doi: 10.1038/srep37268 |
[8] |
Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis [J]. Mol Ther Nucleic Acids, 2017, 7:223-230.
doi: 10.1016/j.omtn.2017.04.004 |
[9] |
Liu Q, Hu X, Zhang X, et al. The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis [J]. Mol Ther, 2016, 24(10):1726-1733.
doi: 10.1038/mt.2016.151 |
[10] |
Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis [J]. Mol Ther, 2015, 23(8):1331-1340.
doi: 10.1038/mt.2015.61 |
[11] |
Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 “Sponge” in human cartilage degradation [J]. Sci Rep, 2016, 6:22572.
doi: 10.1038/srep22572 |
[12] |
Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis [J]. Arthritis Rheumatol, 2014, 66(4):969-978.
doi: 10.1002/art.38309 |
[13] |
Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development [J]. Nat Commun, 2019, 10(1):1914.
doi: 10.1038/s41467-019-09839-x |
[14] |
Cheng J, Hu X, Dai L, et al. Inhibition of transforming growth factor beta-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis [J]. Sci Rep, 2016, 6:34497.
doi: 10.1038/srep34497 pmid: 27682596 |
[15] |
Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7 [J]. Front Cell Dev Biol, 2021, 9:638382.
doi: 10.3389/fcell.2021.638382 pmid: 33937236 |
[16] |
Pi Y, Zhang X, Shao Z, et al. Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice [J]. Gene Ther, 2015, 22(6):439-448.
doi: 10.1038/gt.2015.16 pmid: 25876463 |
[17] |
Pi Y, Zhang X, Shi J, et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display [J]. Biomaterials, 2011, 32(26):6324-6332.
doi: 10.1016/j.biomaterials.2011.05.017 |
[18] |
Ogura T, Bryant T, Merkely G, et al. Survival analysis of revision autologous chondrocyte implantation for failed ACI [J]. Am J Sports Med, 2019, 47(13):3212-3220.
doi: 10.1177/0363546519876630 |
[19] | Shao Z, Zhang X, Pi Y, et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo [J]. Biomate-rials, 2012, 33(12):3375-3387. |
[20] |
Huang H, Zhang X, Hu X, et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration [J]. Biomaterials, 2014, 35(36):9608-9619.
doi: 10.1016/j.biomaterials.2014.08.020 |
[21] |
Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration [J]. Biomaterials, 2021, 269:120539.
doi: 10.1016/j.biomaterials.2020.120539 |
[22] |
Zhang W, Ling C, Zhang A, et al. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration [J]. Bioact Mater, 2020, 5(4):832-843.
doi: 10.1016/j.bioactmat.2020.05.003 pmid: 32637747 |
[23] |
Hu X, Zhu J, Li X, et al. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo [J]. Biomaterials, 2015, 52:441-451.
doi: 10.1016/j.biomaterials.2015.02.050 |
[24] |
Zhang X, Zheng Z, Liu P, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair [J]. Biomaterials, 2008, 29(35):4616-4629.
doi: 10.1016/j.biomaterials.2008.07.051 pmid: 18793797 |
[25] |
Dai L, He Z, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: A technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture [J]. Am J Sports Med, 2014, 42(3):583-591.
doi: 10.1177/0363546513518415 |
[26] | Dai L, He Z, Jiang Y, et al. One-step strategy for cartilage repair using acellular bone matrix scaffold based in situ tissue engineering technique in a preclinical minipig model [J]. Am J Transl Res, 2019, 11(10):6650-6659. |
[27] |
Meng Q, Man Z, Dai L, et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration [J]. Sci Rep, 2015, 5:17802.
doi: 10.1038/srep17802 |
[28] |
Meng Q, Hu X, Huang H, et al. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models [J]. Acta Biomater, 2017, 53:279-292.
doi: 10.1016/j.actbio.2017.01.055 |
[29] |
Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bioink in extrusion-based 3D cell printing [J]. Biofabrication, 2020, 12(4):045011.
doi: 10.1088/1758-5090/aba411 |
[30] | Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo [J]. Adv Mater, 2017, 29():1701089.1-7. |
[1] | 王江静,魏顺依,敖英芳,杨渝平. 前交叉韧带重建术后三种不同药物镇痛早期疗效的对比[J]. 北京大学学报(医学版), 2024, 56(2): 293-298. |
[2] | 陈逸凡,刘中砥,张鹏,黄伟. 严重创伤患者损伤严重度评分的一致性[J]. 北京大学学报(医学版), 2024, 56(1): 157-160. |
[3] | 陈晓颖,张一,李雨柯,唐琳,刘玉华. 不同种类聚合物对猪小肠黏膜下层支架仿生矿化的影响[J]. 北京大学学报(医学版), 2024, 56(1): 17-24. |
[4] | 赵菡,卫彦,张学慧,杨小平,蔡晴,宁成云,徐明明,刘雯雯,黄颖,何颖,郭亚茹,江圣杰,白云洋,吴宇佳,郭雨思,郑晓娜,李文静,邓旭亮. 口腔硬组织修复材料仿生设计制备和临床转化[J]. 北京大学学报(医学版), 2024, 56(1): 4-8. |
[5] | 潘媛,顾航,肖涵,赵笠君,汤祎熳,葛雯姝. 泛素特异性蛋白酶42调节人脂肪干细胞成骨向分化[J]. 北京大学学报(医学版), 2024, 56(1): 9-16. |
[6] | 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98. |
[7] | 段登辉,WANGHom-Lay,王恩博. 可吸收胶原膜在颊侧袋形瓣引导性骨再生手术中的作用: 一项回顾性影像学队列研究[J]. 北京大学学报(医学版), 2023, 55(6): 1097-1104. |
[8] | 秦彩朋,王飞,杜依青,张晓威,李清,刘士军,徐涛. 无症状无积水输尿管结石4例患者的诊治[J]. 北京大学学报(医学版), 2023, 55(5): 939-942. |
[9] | 刘志伟,刘鹏,孟凡星,李天水,王颖,高嘉琪,周佐邑,王聪,赵斌. 内源性二氧化硫对脓毒症大鼠心肌氧化应激的调节[J]. 北京大学学报(医学版), 2023, 55(4): 582-586. |
[10] | 代云飞,刘鹤,彭楚芳,姜玺军. 年轻恒牙牙髓再生治疗术后36个月的临床疗效评估[J]. 北京大学学报(医学版), 2023, 55(4): 729-735. |
[11] | 李雨柯,王梅,唐琳,刘玉华,陈晓颖. 不同pH值对脱细胞小肠黏膜下层海绵支架螯合锶离子的影响[J]. 北京大学学报(医学版), 2023, 55(1): 44-51. |
[12] | 张璐,陈澄,翁梅婷,郑爱萍,苏美玲,王庆文,蔡月明. 狼疮肾炎患者肾小管间质损伤的自身抗体特征[J]. 北京大学学报(医学版), 2022, 54(6): 1094-1098. |
[13] | 高亚东,朱安,李璐迪,张涛,王硕,单丹萍,李盈姿,王旗. 吴茱萸碱对HepG2细胞毒性及其机制[J]. 北京大学学报(医学版), 2021, 53(6): 1107-1114. |
[14] | 董寒梅,吴睿麒,高冠英,刘镕阁,徐雁. 关节镜下盂唇重建治疗髋关节撞击综合征12例[J]. 北京大学学报(医学版), 2021, 53(5): 1007-1011. |
[15] | 蒋青,张雨. 新形势下运动损伤特点及细胞生物治疗的应用前景和挑战[J]. 北京大学学报(医学版), 2021, 53(5): 828-831. |
|