北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (4): 700-707. doi: 10.19723/j.issn.1671-167X.2024.04.025

• 论著 • 上一篇    下一篇

天津与上海35岁以上人群氮氧化物个体暴露水平及其影响因素

庞博1,郭桐君1,陈曦2,郭华棋3,石嘉章1,陈娟1,王欣梅1,李耀妍2,单安琪2,余恒意3,黄婧1,汤乃军2,王艳4,郭新彪1,李国星1,*(),吴少伟5,*()   

  1. 1. 北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191
    2. 天津医科大学公共卫生学院劳动卫生与环境卫生学系,天津市环境营养与人群健康重点实验室,天津 300070
    3. 上海交通大学公共卫生学院食品安全与毒理学系,上海 200020
    4. 上海交通大学医学院附属第九人民医院,上海 200011
    5. 西安交通大学医学部公共卫生学院劳动卫生与环境卫生学系,西安 710061
  • 收稿日期:2021-01-08 出版日期:2024-08-18 发布日期:2024-07-23
  • 通讯作者: 李国星,吴少伟 E-mail:liguoxing@bjmu.edu.cn;shaowei_wu@xjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFC0211600);国家重点研发计划(2017YFC0211601)

Personal nitrogen oxides exposure levels and related influencing factors in adults over 35 years old in Tianjin and Shanghai

Bo PANG1,Tongjun GUO1,Xi CHEN2,Huaqi GUO3,Jiazhang SHI1,Juan CHEN1,Xinmei WANG1,Yaoyan LI2,Anqi SHAN2,Hengyi YU3,Jing HUANG1,Naijun TANG2,Yan WANG4,Xinbiao GUO1,Guoxing LI1,*(),Shaowei WU5,*()   

  1. 1. Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
    2. Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
    3. Department of Food Safety and Toxicology, School of Public Health, Shanghai Jiao Tong University, Shanghai 200020, China
    4. The Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
    5. Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
  • Received:2021-01-08 Online:2024-08-18 Published:2024-07-23
  • Contact: Guoxing LI,Shaowei WU E-mail:liguoxing@bjmu.edu.cn;shaowei_wu@xjtu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFC0211600);National Key Research and Development Program of China(2017YFC0211601)

RICH HTML

  

摘要:

目的: 对天津和上海35岁以上人群氮氧化物(nitrogen oxides,NOX)与二氧化氮(nitrogen dioxide,NO2)个体暴露水平进行测量,并探讨研究对象基线特征、居住环境情况及日常活动模式等因素对其影响。方法: 采用定组研究,在天津和上海招募91名年龄35岁以上的研究对象,分别在夏季和冬季各进行3次随访(上海冬季因新型冠状病毒肺炎疫情影响只进行了1次随访),每两次随访之间间隔至少为2个星期,有27名研究对象参与了两个季节的研究。每次随访使用Ogawa被动式采样器测量个体24 h NOX与NO2暴露浓度,通过问卷和日志收集日常活动模式信息。采用混合线性效应模型分析不同因素对NOX与NO2个体暴露水平的影响。结果: 两地人群共完成349人次有效的24 h内NO2与NOX个体暴露监测,天津夏季NO2与NOX个体暴露日均值(体积分数)分别为18.0×10-9和26.2×10-9,天津冬季分别为31.0×10-9和54.9×10-9,上海夏季分别为38.7×10-9和100.0×10-9,上海冬季分别为45.5×10-9和139.2×10-9。单因素回归分析结果显示NOX与NO2个体暴露水平与城市、季节、性别、日均做饭次数以及监测站大气NO2浓度显著相关。除以上因素外,NOX个体暴露水平还与教育水平有显著关联,NO2个体暴露水平还与是否被动吸烟、日均居家时间、烹饪燃料类型、住宅与交通主干道距离、是否使用抽油烟机存在显著关联。多因素回归分析显示,NO2与NOX个体暴露水平天津显著低于上海,夏季显著低于冬季,男性NOX个体暴露水平显著高于女性。监测站NO2浓度与NO2和NOX个体暴露水平呈显著正向关联;日均做饭次数与NO2个体暴露水平之间呈显著正向关联,日均居家时间与NO2个体暴露水平之间呈显著负向关联。大气NO2浓度每升高1个四分位间距(interquartile range,IQR), 即12.7×10-9,NO2个体暴露水平上升27.5%[95%置信区间(confidence interval,CI):17.0%~38.9%],NOX个体暴露水平上升16.1%(95%CI:7.1%~25.8%)。结论: 不同季节、城市和大气NO2浓度均可以影响NO2与NOX的个体暴露水平,同时NO2个体暴露水平还受到生活习惯等因素的影响。

关键词: 空气污染, 氮氧化物, 个体暴露, 危险因素

Abstract:

Objective: To investigate personal exposures to nitrogen oxides (NOX) and nitrogen di-oxide (NO2) and the influence of baseline personal characteristics, living environment and daily activity patterns of the participants on the exposures among adults over 35 in Tianjin and Shanghai. Methods: In this panel study, 91 healthy nonsmoking adults aged over 35 from Tianjin and Shanghai participated in our study. The study was conducted in summer and winter. The participants were followed for three times with an interval of at least two weeks. Only participants in Shanghai were followed once in winter because of the COVID-19 pandemic. Twenty-seven participants completed follow-up visits in both seasons. We measured their 24 h personal exposures to NOX and NO2and collected their baseline and time-activity information through questionnaire/diary. The linear mixed model was used to analyze the associations between potential influencing factors and personal NOX and NO2 exposure levels. Results: There were 349 follow-up visits with valid 24 h personal NO2 and NOX exposure measurements in the two cities. The ave-rage 24 h personal exposures to NO2 and NOX (volume fraction) in Tianjin participants were 18.0×10-9 and 26.2×10-9 in summer, and 31.0×10-9 and 54.9×10-9 in winter, respectively; and the average 24 h personal exposures to NO2 and NOX in Shanghai participants were 38.7×10-9 and 100.0×10-9 in summer, and 45.5×10-9 and 139.2×10-9 in winter, respectively. The results of univariate regression analysis showed that their personal NOX exposure levels were significantly associated with city, season, gender, average daily cooking times, and ambient NO2 concentrations measured at fixed-site monitoring stations. In addition to the above factors, the personal NOX exposure levels were also significantly associated with educational level and the personal NO2 exposure levels were also significantly associated with passive smoking, average daily home time, cooking energy type, residential distance from main traffic road, and use of kitchen ventilators. Multivariate regression analysis showed that the personal exposure levels of NO2 and NOX were significantly lower in Tianjin than that in Shanghai, were significantly lower in summer than that in winter, and were significantly and positively associated with ambient NO2 concentrations measured at fixed-site monitoring stations. In addition, personal NOX exposure levels were significantly lower in females than in males, and personal NO2 exposure levels were significantly positively associated with average daily cooking times and significantly inversely associated with average daily home time. For every interquartile range (IQR) increase (12.7×10-9) in ambient NO2, the personal NO2 exposure levels increased by 27.5% (95%CI: 17.0%-38.9%), and personal NOX exposure levels increased by 16.1% (95%CI: 7.1%-25.8%). Conclusion: Season, city and ambient NO2 concentrations are significant influencing factors of personal exposure levels of NO2and NOX. At the same time, the personal exposures levels of NO2are also affected by lifestyle factors. Our study provides scientific evidence for making precise air pollution control decisions and reducing the exposure levels of NOX in the population.

Key words: Air pollution, Nitrogen oxides, Personal exposure, Risk factors

中图分类号: 

  • R122.7

表1

研究对象个体基线特征、居住环境情况以及日常活动模式(n=91)"

Variablen (%) or $\bar x \pm s$Variablen (%) or $\bar x \pm s$
Age 53.5±5.5 Average daily traffic time/min 428.0±588.7
  ≤60 years old 85 (93.4) Average daily cooking times
  >60 years old 6 (6.6)   ≤1 39 (42.9)
Gender   2 25 (27.5)
  Male 25 (27.5)   ≥3 27 (29.6)
  Female 66 (72.5) Average daily home time
Spouse   ≤10 h 6 (6.6)
  No 8 (8.8)   10-20 h 17 (18.7)
  Yes 83 (91.2)   ≥20 h 68 (74.7)
Body mass index/(kg/m2) 24.1±2.5 Cooking energy type
Educational level   Natural gas 76 (83.5)
  Below high school 4 (4.4)   Liquefied gas 6 (6.6)
  High school and above 87 (95.6)   Electricity 4 (4.4)
Passive smoking   Piped gas 4 (4.4)
  No 50 (54.9)   Else 1 (1.1)
  Yes 41 (45.1) Use of kitchen ventilatorsa
City   No 8 (8.9)
  Shanghai 71 (78.0)   Yes 82 (91.1)
  Tianjin 20 (22.0) Use of air conditioners
House floor area   No 5 (5.5)
  Small (<90 m2) 75 (82.4)   Yes 86 (94.5)
  Medium and large (≥90 m2) 16 (17.6) Use of air purifiers
Residential distance from main traffic road   No 78 (84.7)
  <50 meters 27 (29.7)   Yes 13 (14.3)
  50-100 meters 27 (29.7)
  >100 meters 37 (40.6)
Separated kitchen and living room
  No 2 (2.2)
  Yes 89 (97.8)

表2

研究期间个体NO2与NOX暴露水平、个体温湿度日均值及四分位间距值"

VariableTianjin Shanghai IQR F
Summer (n=41) Winter (n=41) Summer (n=223) Winter (n=44)
Personal NO2/(×10-9) 18.0 (7.5) 31.0 (10.7) 38.7 (19.5) 45.5 (12.4) 26.2 23.3*
Personal NOX/(×10-9) 26.2 (17.3) 54.9 (29.4) 100.0 (46.7) 139.2 (54.4) 52.8 60.4*
Ambient NO2/(×10-9) 42.2 (16.0) 58.5 (18.6) 19.6 (7.0) 31.8 (6.1) 12.7 52.2*
Personal temperature/℃ 25.1 (3.2) 18.8 (3.0) 28.0 (1.8) 24.3 (5.4) 7.0 435.1*
Personal RH/% 48.1 (9.1) 28.7 (7.6) 64.9 (7.7) 64.8 (9.7) 16.4 237.6*

表3

NO2与NOX个体暴露水平影响因素的单因素回归结果"

Variable Univariate regression β (SE) for NO2 Univariate regression β (SE) for NOX
City
  Shanghai
  Tianjin -0.221 1* (0.038 3) -0.491 1* (0.035 5)
Season
  Winter
  Summer -0.077 7* (0.263 0) -0.175 8* (0.028 5)
Average daily cooking times
  ≤1
  2 0.107 0* (0.030 0) 0.096 4* (0.036 2)
  ≥3 0.107 3* (0.031 6) 0.052 5 (0.038 6)
Spouse
  No
  Yes 0.036 3 (0.045 7) 0.028 2 (0.053 5)
Educational level
  Below high school
  High school and above 0.230 8 (0.056 2) -0.132 6* (0.065 3)
House floor area
  Small (<90 m2)
  Medium and large (≥90 m2) 0.018 4 (0.035 9) 0.045 7 (0.042 8)
Separated kitchen and living room
  No
  Yes 0.035 5 (0.648 0) 0.013 6 (0.074 5)
BMI 0.004 0 (0.004 4) 0.003 1 (0.005 3)
Average daily traffic time 0.000 03 (0.000 02) 0.000 02 (0.000 02)
Ambient NO2 0.007 6* (0.001 3) 0.008 2* (0.001 4)
Passive smoking
  No
  Yes 0.083 6* (0.025 8) -0.004 7 (0.031 2)
Age
  ≤60 years old
  >60 years old -0.074 8 (0.051 6) -0.051 3 (0.062 6)
Gender
  Male
  Female -0.079 9* (0.030 4) -0.081 9* (0.036 9)
Average daily home time
  ≤10 h
  10-20 h -0.107 7 (0.058 6) -0.016 2 (0.071 9)
  ≥20 h -0.128 4* (0.054 2) -0.046 3 (0.067 1)
Cooking energy type
  Natural gas
  Liquefied gas -0.087 3 (0.048 6) -0.003 9 (0.057 3)
  Electricity -0.140 5* (0.056 7) -0.038 4 (0.066 3)
  Piped gas -0.114 0 (0.075 3) 0.019 8 (0.093 5)
  Else -0.091 4 (0.126 5) 0.064 8 (0.150 9)
Use of kitchen ventilator
  No
  Yes 0.105 3* (0.042 3) 0.008 9 (0.049 7)
Residential distance from main traffic road
  <50 meters
  50-100 meters -0.067 8* (0.032 3) 0.063 3 (0.038 3)
  >100 meters -0.036 3 (0.031 4) 0.017 1 (0.037 8)
Use of air conditioner
  No
  Yes 0.036 2 (0.053 3) -0.116 2 (0.062 8)
Use of air purifier
  No
  Yes 0.014 6 (0.040 1) 0.035 2 (0.049 3)

表4

NO2与NOX个体暴露水平影响因素的多因素线性混合效应模型回归结果"

Variable Multivariate regression β (SE) for NO2 Multivariate regression β (SE) for NOX
City
  Shanghai
  Tianjin -0.249 0* (0.036 2) -0.555 4* (0.031 4)
Season
  Winter
  Summer -0.007 4* (0.029 7) -0.162 4* (0.031 2)
Passive smoking
  No
  Yes 0.043 2 (0.025 5)
Gender
  Male
  Female -0.029 6 (0.027 7) -0.105 4* (0.025 0)
Average daily home time
  ≤10 h
  10-20 h -0.108 4 (0.057 7)
  ≥20 h -0.115 0* (0.053 5)
Cooking energy type
  Natural gas
  Liquefied gas -0.081 4 (0.048 6)
  Electricity -0.110 9 (0.063 3)
  Piped gas -0.087 4 (0.079 1)
  Else -0.170 4 (0.123 8)
Average daily cooking times
  ≤1
  2 0.059 0 (0.028 4) 0.037 7 (0.027 9)
  ≥3 0.085 3* (0.030 0) -0.003 5 (0.028 6)
Educational level
  Below high school
  High school and above -0.054 5 (0.051 1)
Use of kitchen ventilator
  No
  Yes 0.006 0 (0.052 3)
Residential distance from main traffic road
  <50 meters
  50-100 meters -0.046 0 (0.030 0)
  >100 meters -0.041 8 (0.027 9)
Ambient NO2a 0.008 3* (0.001 5) 0.005 1* (0.001 4)
1 中华人民共和国生态环境部. 2022中国生态环境状况公报[EB/OL]. [2023-05-30] (2023-08-08). https://www.gov.cn/lianbo/bumen/202305/content_6883708.htm.
2 Zhang Z , Wang J , Lu W . Exposure to nitrogen dioxide and chro-nic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis[J]. Environ Sci Pollut Res Int, 2018, 25 (15): 15133- 15145.
doi: 10.1007/s11356-018-1629-7
3 常倩. 南京市大气污染物对居民心脑血管、呼吸系统患病和死亡的影响[D]. 南京: 东南大学, 2018.
4 Ciencewicki J , Jaspers I . Air pollution and respiratory viral infection[J]. Inhal Toxicol, 2007, 19 (14): 1135- 1146.
doi: 10.1080/08958370701665434
5 Zhao R , Chen S , Wang W , et al. The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: A systematic review and meta-analysis[J]. Int J Cardiol, 2017, 226, 110- 117.
doi: 10.1016/j.ijcard.2016.10.053
6 Kurt OK , Zhang J , Pinkerton KE . Pulmonary health effects of air pollution[J]. Curr Opin Pulm Med, 2016, 22 (2): 138- 143.
doi: 10.1097/MCP.0000000000000248
7 Yap J , Ng Y , Yeo KK , et al. Particulate air pollution on cardiovascular mortality in the tropics: Impact on the elderly[J]. Environ Health, 2019, 18 (1): 34.
doi: 10.1186/s12940-019-0476-4
8 Simoni M , Jaakkola MS , Carrozzi L , et al. Indoor air pollution and respiratory health in the elderly[J]. Eur Respir J Suppl, 2003, 21 (40): 15s- 20s.
9 Kousa A , Monn C , Rotko T , et al. Personal exposures to NO2 in the EXPOLIS-study: Relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague[J]. Atmos Environ, 2001, 35 (20): 3405- 3412.
doi: 10.1016/S1352-2310(01)00131-5
10 Fe A , Dsm B , Tsn B , et al. Personal exposure to NO2 and benzene in the Cape Town region of South Africa is associated with shorter leukocyte telomere length in women[J]. Environ Res, 2020, 182, 108993.
doi: 10.1016/j.envres.2019.108993
11 Scheers H , Nawrot TS , Nemery B , et al. Changing places to study short-term effects of air pollution on cardiovascular health: A panel study[J]. Environ Health, 2018, 17 (1): 80.
doi: 10.1186/s12940-018-0425-7
12 Nuyts V , Nawrot TS , Scheers H , et al. Air pollution and self-perceived stress and mood: A one-year panel study of healthy elderly persons[J]. Environ Res, 2019, 177, 108644.
doi: 10.1016/j.envres.2019.108644
13 Williams R , Jones P , Croghan C , et al. The influence of human and environmental exposure factors on personal NO2exposures[J]. J Expo Sci & Environ Epidemiol, 2011, 22 (2): 109- 115.
14 Sather ME , Slonecker ET , Kronmiller KG , et al. Evaluation of short-term Ogawa passive, photolytic, and federal reference me-thod sampling devices for nitrogen oxides in El Paso and Houston, Texas[J]. J Environ Monit, 2006, 8 (5): 558- 563.
doi: 10.1039/b601113f
15 Yu CH , Morandi MT , Weisel CP . Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review[J]. J Expo Sci Environ Epidemiol, 2008, 18 (5): 441- 451.
doi: 10.1038/jes.2008.22
16 Hagenbjörk-Gustafsson A , Tornevi A , Forsberg B , et al. Field validation of the Ogawa diffusive sampler for NO2 and NOx in a cold climate[J]. J Environ Monit, 2010, 12 (6): 1315- 1324.
doi: 10.1039/b924615k
17 Ogawa & Co., USA, Inc. NO, NO2, NOx and SO2 sampling protocol using the Ogawa sampler[EB/OL]. (2006-06)[2021-05-01]. http://ogawausa.com/wp-content/uploads/2017/11/prono-noxno2so206_206_1117.pdf.
18 刘越, 黄婧, 郭新彪, 等. 定组研究在我国空气污染流行病学研究中的应用[J]. 环境与健康杂志, 2013, 30 (10): 932- 935.
19 Williams R , Rea A , Vette A , et al. The design and field implementation of the Detroit exposure and aerosol research study[J]. J Expo Sci & Environ Epidemiol, 2009, 19 (7): 643- 659.
20 Brown KW , Sarnat JA , Suh HH , et al. Factors influencing relationships between personal and ambient concentrations of gaseous and particulate pollutants[J]. Sci Total Environ, 2009, 407 (12): 3754- 3765.
doi: 10.1016/j.scitotenv.2009.02.016
21 Dédelé A , Miškinyté A . Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves[J]. Environ Sci & Pollut Res, 2016, 23 (17): 17784- 17792.
22 Cattaneo A , Peruzzo C , Garramone G , et al. Airborne particulate matter and gaseous air pollutants in residential structures in Lodi province, Italy[J]. Indoor Air, 2011, 21 (6): 489- 500.
doi: 10.1111/j.1600-0668.2011.00731.x
23 Nakao M , Ishihara Y , Kim CH , et al. The impact of air pollution, including Asian sand dust, on respiratory symptoms and health-related quality of life in outpatients with chronic respiratory disease in Korea: A panel study[J]. J Prev Med Public Health, 2018, 51 (3): 130- 139.
doi: 10.3961/jpmph.18.021
24 Sarnat SE , Coull BA , Schwartz J , et al. Factors affecting the association between ambient concentrations and personal exposures to particles and gases[J]. Environ Health Perspect, 2006, 114 (5): 649- 654.
doi: 10.1289/ehp.8422
25 Sarnat AJ , Brown WK , Schwartz J , et al. Ambient gas concentrations and personal particulate matter exposures[J]. Epidemiology, 2005, 16 (3): 385- 395.
26 李志珍. 近年来上海市大气污染物变化及影响因素分析[J]. 内蒙古科技与经济, 2020, (3): 44- 46.
27 Lee H , Gu M , Kim YJ , et al. First-time remote sensing of NO2 vertical distributions in an urban street canyon using topographic target light scattering differential optical absorption spectroscopy (ToTaL-DOAS)[J]. Atmos Environ, 2012, 54, 519- 528.
28 沈楠驰, 周丙锋, 李珊珊, 等. 2015—2019年天津市大气污染物时空变化特征及成因分析[J]. 生态环境学报, 2020, 29 (9): 1862- 1873.
29 环境保护部. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2012.
[1] 李志存, 吴天俣, 梁磊, 范宇, 孟一森, 张骞. 穿刺活检单针阳性前列腺癌术后病理升级的危险因素分析及列线图模型构建[J]. 北京大学学报(医学版), 2024, 56(5): 896-901.
[2] 颜野,李小龙,夏海缀,朱学华,张羽婷,张帆,刘可,刘承,马潞林. 前列腺癌根治术后远期膀胱过度活动症的危险因素[J]. 北京大学学报(医学版), 2024, 56(4): 589-593.
[3] 陈延,李况蒙,洪锴,张树栋,程建星,郑仲杰,唐文豪,赵连明,张海涛,姜辉,林浩成. 阴茎海绵体注射试验对阴茎血管功能影响的回顾性研究[J]. 北京大学学报(医学版), 2024, 56(4): 680-686.
[4] 和静,房中则,杨颖,刘静,马文瑶,霍勇,高炜,武阳丰,谢高强. 血浆中脂质代谢分子与颈动脉粥样硬化斑块、传统心血管危险因素及膳食因素的关系[J]. 北京大学学报(医学版), 2024, 56(4): 722-728.
[5] 蔡珊,张依航,陈子玥,刘云飞,党佳佳,师嫡,李佳欣,黄天彧,马军,宋逸. 北京市中小学生身体活动时间现状及影响因素的路径[J]. 北京大学学报(医学版), 2024, 56(3): 403-410.
[6] 张祖洪,陈天娇,马军. 中小学生青春发动时相与心血管代谢危险因素的相关性[J]. 北京大学学报(医学版), 2024, 56(3): 418-423.
[7] 林郁婷,王华丽,田宇,巩俐彤,常春. 北京市老年人认知功能的影响因素[J]. 北京大学学报(医学版), 2024, 56(3): 456-461.
[8] 朱金荣,赵亚娜,黄巍,赵微微,王悦,王松,苏春燕. 感染新型冠状病毒的血液透析患者的临床特征[J]. 北京大学学报(医学版), 2024, 56(2): 267-272.
[9] 赖展鸿,李嘉辰,贠泽霖,张永刚,张昊,邢晓燕,邵苗,金月波,王乃迪,李依敏,李玉慧,栗占国. 特发性炎性肌病完全临床应答相关因素的单中心真实世界研究[J]. 北京大学学报(医学版), 2024, 56(2): 284-292.
[10] 司筱芊,赵秀娟,朱凤雪,王天兵. 创伤出血性休克后急性呼吸窘迫综合征的危险因素[J]. 北京大学学报(医学版), 2024, 56(2): 307-312.
[11] 李洋洋,侯林,马紫君,黄山雅美,刘捷,曾超美,秦炯. 孕期因素与婴儿牛奶蛋白过敏的关系[J]. 北京大学学报(医学版), 2024, 56(1): 144-149.
[12] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[13] 罗靓,李云,王红彦,相晓红,赵静,孙峰,张晓盈,贾汝琳,李春. 抗内皮细胞抗体检测在早期流产中的预测价值[J]. 北京大学学报(医学版), 2023, 55(6): 1039-1044.
[14] 游芳凝,罗靓,刘香君,张学武,李春. 未分化结缔组织病患者的妊娠结局、疾病演变及其影响因素[J]. 北京大学学报(医学版), 2023, 55(6): 1045-1052.
[15] 李宇菲,闫亚妮,靳家扬,李春,裴秋艳. 合并胎儿心脏病变的抗SSA抗体阳性孕妇的临床及实验室特征[J]. 北京大学学报(医学版), 2023, 55(6): 1053-1057.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!