北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 113-120. doi: 10.19723/j.issn.1671-167X.2025.01.017
朱玉佳1, 沈华2, 温奥楠1, 高梓翔1, 秦庆钊1, 单珅瑶3, 李文博3, 傅湘玲2, 赵一姣1,3,*(), 王勇1,*()
Yujia ZHU1, Hua SHEN2, Aonan WEN1, Zixiang GAO1, Qingzhao QIN1, Shenyao SHAN3, Wenbo LI3, Xiangling FU2, Yijiao ZHAO1,3,*(), Yong WANG1,*()
摘要:
目的: 建立一种可实现三维颌面点云数据智能配准的本体-镜像关联深度学习算法,基于颌面动态图结构的配准网络(maxillofacial dynamic graph registration network,MDGR-Net)模型,实现三维颌面对称参考平面的自动化构建,以期为口腔临床数字化设计与分析提供参考。方法: 收集2018年10月至2022年10月就诊于北京大学口腔医院无显著颌面畸形临床患者400例,通过数据增强的方式获得2 000例三维颌面数据用于MDGR-Net算法训练与测试,其中训练集1 600例、验证集200例、内部测试集200例,MDGR-Net模型包含构造本体与镜像点云(X和Y)中关键点的特征向量,基于特征向量获取点云X和Y中关键点的对应关系,以及通过奇异值分解(singular value decomposition,SVD)计算旋转和平移矩阵R,t。基于MDGR-Net模型实现本体点云与镜像点云的智能配准,获得本体-镜像联合点云,并采用主成分分析(principal component analysis,PCA)算法获得MDGR-Net关联法对称参考平面。基于决定系数(coefficient of determination,R2)指标对内部测试集平移及旋转矩阵进行模型评价,并对200例内部测试集与40例外部测试集临床数据,基于MDGR-Net关联法与“真值”迭代最近点(iterative closest point,ICP)关联法构建的三维颌面对称参考平面进行角度误差评价。结果: 基于200例内部测试集三维颌面数据测试MDGR-Net旋转矩阵R2为0.91,平移矩阵R2为0.98。在内部与外部测试集上,角度误差平均值分别为0.84°±0.55°、0.58°±0.43°,临床构建40例三维颌面对称参考平面仅需3 s,在正畸骨性Ⅲ类、高角、安氏Ⅲ类错牙合畸形受试者表现最佳。结论: 基于点云智能配准的MDGR-Net关联法为口腔临床三维颌面对称参考平面构建提供了新的解决方案,可显著提升诊疗效率和效果,降低专家依赖性。
中图分类号:
1 |
Khambay BS , Lowney CJ , Hsung T , et al. Fluctuating asymmetry of dynamic smiles in normal individuals[J]. Int J Oral Maxillofac Surg, 2019, 48 (10): 1372- 1379.
doi: 10.1016/j.ijom.2019.01.032 |
2 |
Hoenn M , Goez G . The ideal of facial beauty: A review[J]. J Orofac Orthop, 2007, 68 (1): 6- 16.
doi: 10.1007/s00056-007-0604-6 |
3 |
Huang CS , Liu XQ , Chen YR . Facial asymmetry index in normal young adults[J]. Orthod Craniofac Res, 2013, 16 (2): 97- 104.
doi: 10.1111/ocr.12010 |
4 | Arora KS , Bansal R , Mohapatra S , et al. Review and classification update: Unilateral condylar hyperplasia[J]. BMJ Case Rep, 2019, 12 (2): e227569. |
5 |
Brown JS , Barry C , Ho M , et al. A new classification for mandi-bular defects after oncological resection[J]. Lancet Oncol, 2016, 17 (1): E23- E30.
doi: 10.1016/S1470-2045(15)00310-1 |
6 |
Li Y , Shao Z , Zhu Y , et al. Virtual surgical planning for successful second-stage mandibular defect reconstruction using vascula-rized iliac crest bone flap a valid and reliable method[J]. Ann Plast Surg, 2020, 84 (2): 183- 187.
doi: 10.1097/SAP.0000000000002102 |
7 |
顾晓宇, 陈晓波, 焦婷, 等. 三维打印数字化阴模辅助制作口腔颌面缺损赝复体的临床应用[J]. 中华口腔医学杂志, 2017, 52 (6): 336- 341.
doi: 10.3760/cma.j.issn.1002-0098.2017.06.003 |
8 |
Maesschalck TD , Courvoisier DS , Scolozzi P . Computer-assisted versus traditional freehand technique in fibular free flap mandibular reconstruction: A morphological comparative study[J]. Eur Arch Otorhinolaryngol, 2017, 274 (1): 517- 526.
doi: 10.1007/s00405-016-4246-4 |
9 |
Shin SM , Kim Y , Kim N , et al. Statistical shape analysis-based determination of optimal midsagittal reference plane for evaluation of facial asymmetry[J]. Am J Orthod Dentofacial Orthop, 2016, 150 (2): 252- 260.
doi: 10.1016/j.ajodo.2016.01.017 |
10 |
Dobai A , Markella Z , Vizkelety T , et al. Landmark-based midsagittal plane analysis in patients with facial symmetry and asymmetry based on CBCT analysis tomography[J]. J Orofac Orthop, 2018, 79 (6): 371- 379.
doi: 10.1007/s00056-018-0151-3 |
11 | Klingenberg CP , Barluenga M , Meyer A . Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry[J]. Evolution, 2002, 56 (10): 1909- 1920. |
12 |
Hartmann J , Meyer-Marcotty P , Benz M , et al. Reliability of a method for computing facial symmetry plane and degree of asymmetry based on 3D-data[J]. J Orofac Orthop, 2007, 68 (6): 477- 490.
doi: 10.1007/s00056-007-0652-y |
13 |
刘筱菁, 李倩倩, 王晓霞, 等. 基于本体-镜像关联的三维头颅正中矢状面自动构建法[J]. 中华口腔正畸学杂志, 2014, 21 (3): 148- 150.
doi: 10.3760/cma.j.issn.1674-5760.2014.03.006 |
14 |
Djordjevic J , Pirttiniemi P , Harila V , et al. Three-dimensional longitudinal assessment of facial symmetry in adolescents[J]. Eur J Orthod, 2013, 35 (2): 143- 151.
doi: 10.1093/ejo/cjr006 |
15 | 浙江大学, 中国食品药品检定研究院, 海军军医大学第二附属医院. 人工智能医疗器械性能评价通用方法专家共识(2023)[J]. 协和医学杂志, 2023, 14 (3): 494- 503. |
16 | Du S , Xu Y , Wan T , et al. Robust iterative closest point algorithm based on global reference point for rotation invariant registration[J]. PLoS One, 2017, 12 (11): e18803911. |
17 |
Xiong Y , Zhao Y , Yang H , et al. Comparison between interactive closest point and procrustes analysis for determining the median sagittal plane of three-dimensional facial data[J]. J Craniofac Surg, 2016, 27 (2): 441- 444.
doi: 10.1097/SCS.0000000000002376 |
18 | Zelditch , Leah M . Geometric morphometrics for biologists: A primer[M]. New York and London: Elsevier Academic Press, 2004. |
19 | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]/ /Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. Las Vegas, Nevada, USA: Institute of Electrical and Electronics Engineers, 2016: 779-788. |
20 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]/ /Navab N, Hornegger J, Wells WM, et al. Proccedings of the International Confe-rence on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2015. Germany: Springer International Publishing, 2015: 234-241. |
21 |
Schwendicke F , Singh T , Lee J , et al. Artificial intelligence in dental research: Checklist for authors, reviewers, readers[J]. J Dent, 2021, 107, 103610.
doi: 10.1016/j.jdent.2021.103610 |
22 |
Schwendicke F , Samek W , Krois J . Artificial intelligence in dentistry: Chances and challenges[J]. J Dent Res, 2020, 99 (7): 769- 774.
doi: 10.1177/0022034520915714 |
23 | Wang Y , Sun Y , Liu Z , et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions On Graphics (TOG), 2019, 38 (5): 1- 12. |
24 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]/ /Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). Red Hook, NY, USA: Curran Associates, Inc., 2017. |
25 |
Wu J , Heike C , Birgfeld C , et al. Measuring symmetry in children with unrepaired cleft lip: Defining a standard for the three-dimensional midfacial reference plane[J]. Cleft Palate Craniofac J, 2016, 53 (6): 695- 704.
doi: 10.1597/15-053 |
[1] | 许克新,丁泽华. 人工智能在功能泌尿外科的应用[J]. 北京大学学报(医学版), 2023, 55(5): 771-774. |
[2] | 王哲,孙伟,杨雪,宋颖,姬爱平,白洁. 口腔急诊颌面部感染患者临床分析[J]. 北京大学学报(医学版), 2023, 55(3): 543-547. |
[3] | 宿骞,彭歆,周传香,俞光岩. 369例口腔颌面部非霍奇金淋巴瘤的临床病理特点及预后[J]. 北京大学学报(医学版), 2023, 55(1): 13-21. |
[4] | 熊士凯,史尉利,王安鸿,谢兴,郭秦炜. 腓骨远端撕脱骨折的影像学诊断:踝关节X线与CT三维重建的比较[J]. 北京大学学报(医学版), 2023, 55(1): 156-159. |
[5] | 马芮,宣岩,段瑶,帅婷. 口腔颌面部恶性肿瘤患者术后正念水平调查及影响因素分析[J]. 北京大学学报(医学版), 2022, 54(4): 727-734. |
[6] | 朱玉佳,许晴,赵一姣,张磊,付子旺,温奥楠,高梓翔,张昀,傅湘玲,王勇. 深度学习算法辅助构建三维颜面正中矢状平面[J]. 北京大学学报(医学版), 2022, 54(1): 134-139. |
[7] | 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622. |
[8] | 朱玉佳,赵一姣,郑盛文,温奥楠,傅湘玲,王勇. 基于赋权形态学分析的三维面部对称参考平面构建方法[J]. 北京大学学报(医学版), 2021, 53(1): 220-226. |
[9] | 唐祖南,Hui Yuh Soh,胡耒豪,于尧,章文博,彭歆. 混合现实技术在口腔颌面部肿瘤手术中的应用[J]. 北京大学学报(医学版), 2020, 52(6): 1124-1129. |
[10] | 王顺吉,章文博,于尧,谢晓艳,杨宏宇,彭歆. 术前虚拟设计在股前外侧皮瓣修复口腔颌面部缺损中的应用[J]. 北京大学学报(医学版), 2020, 52(1): 119-123. |
[11] | 戴帆帆,刘怡,许天民,陈贵. 探索成人正畸前后下颌三维数字化模型的重叠方法[J]. 北京大学学报(医学版), 2018, 50(2): 271-278. |
[12] | 瞿经纬,吕肖庆,刘振明,廖媛,孙鹏晖,王蓓,汤帜. 一种基于图塌缩的药物分子检索方法[J]. 北京大学学报(医学版), 2018, 50(2): 368-374. |
[13] | 程明轩,姜婷,孙玉春,张皓羽. 比较口内扫描和模型扫描对数字化牙列模型咬合定量分析的影响[J]. 北京大学学报(医学版), 2018, 50(1): 136-140. |
[14] | 魏菱,陈虎,周永胜,孙玉春,潘韶霞. 数字化全口义齿个别托盘制作与临床应用时间[J]. 北京大学学报(医学版), 2017, 49(1): 86-091. |
[15] | 王斯维,黎敏,杨慧芳,赵一姣,王勇,刘怡. 3种生成大视野锥形束CT数据正中矢状面方法的比较[J]. 北京大学学报(医学版), 2016, 48(2): 330-335. |
|