北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (5): 952-958. doi: 10.19723/j.issn.1671-167X.2020.05.027

• 论著 • 上一篇    下一篇

猪小肠黏膜下层海绵的制备及促成骨作用

王梅1*,李博文1*,王思雯2,刘玉华1,()   

  1. 1.北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
    2.同济大学附属口腔医院修复教研室,上海 200072
  • 收稿日期:2018-10-09 出版日期:2020-10-18 发布日期:2020-10-15
  • 通讯作者: 刘玉华 E-mail:liuyuhua@bjmu.edu.cn

Preparation and osteogenic effect study of small intestinal submucosa sponge

Mei WANG1*,Bo-wen LI1*,Si-wen WANG2,Yu-hua LIU1,()   

  1. 1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Prosthodontics, Tongji University School and Hospital of Stomatology, Shanghai 200072, China
  • Received:2018-10-09 Online:2020-10-18 Published:2020-10-15
  • Contact: Yu-hua LIU E-mail:liuyuhua@bjmu.edu.cn

RICH HTML

  

摘要:

目的:制备并通过体外实验评价一种新型猪小肠黏膜下层(small intestinal submucosa, SIS)海绵的基本性能,建立动物模型评价其体内促成骨能力。方法:采用冷冻干燥法制备SIS海绵,通过环境扫描电镜观察微观结构和孔径大小,比重法检测孔隙率和吸水率,万能力学试验机测试其机械性能,细胞增殖-毒性检测评估其生物相容性。通过建立比格犬动物模型评价其体内促成骨作用,将3只比格犬前磨牙拔牙窝共计18个位点随机分为3组,放置SIS海绵作为SIS海绵组、放置Bio-Oss骨粉并覆盖Bio-Gide膜作为阳性对照组,不做处理作为空白对照组,术后分别于4周和12周取材行微计算机断层扫描技术(micro computed tomography, Micro-CT)检测,采用单因素方差分析法对数据进行统计学分析,以评估SIS海绵的促成骨效果。结果:SIS海绵的平均孔径为(194.90±30.39) μm,孔隙率为92.31%±0.24%,吸水率为771.50%±40.90%,压缩弹性模量为(2.20±0.19) kPa。细胞增殖-毒性检测结果显示SIS海绵不会影响人骨髓间充质干细胞的早期增殖,Micro-CT结果显示术后4周时SIS海绵组骨体积分数(bone volume fraction, BV/TV, 52.81%±3.21%)和阳性对照组(58.30%±9.36%)显著高于空白对照组(38.65%±4.80%,P <0.05),SIS海绵组骨密度[bone mineralized density, BMD, (887.09±61.02) mg/cm3]、阳性对照组[(952.05±132.78) mg/cm3]和空白对照组[(879.29±74.27) mg/cm3] 差异无统计学意义(P >0.05);术后12周时SIS海绵组BV/TV(47.89%±3.59%)显著低于阳性对照组(60.57%±6.56%, P <0.05),与空白对照组(42.99%±2.54%)差异无统计学(P >0.05),SIS海绵组BMD[(1047±89.95) mg/cm3]和阳性对照组[(1101.37±98.85) mg/cm3]显著高于空白对照组[(890.36±79.79) mg/cm3,P <0.05]。结论:SIS海绵具有良好的理化性能和生物相容性,在犬拔牙窝成骨早期(4周)能提高新生BV/TV,在犬拔牙窝成骨后期(12周)可提高新生BMD,具有潜在促成骨应用前景。

关键词: 猪小肠黏膜下层海绵, 骨组织工程, 促成骨

Abstract:

Objective: To prepare and evaluate the basic properties in vitro of a novel small intestinal submucosa (SIS) sponge, and to describe the bone formation ability of the SIS sponge in vivo. Methods: The SIS sponge was prepared by freeze-drying method. To evaluate the physicochemical properties of the sponge, electron microscope observation, porosity test, water absorption ability and mechanical property were conducted in vitro. The cytotoxicity of the SIS sponge was performed by cell counting kit-8 method. In vivo experiments, eighteen extraction sockets of premolar of three Beagle dogs were randomly divided into three groups: SIS sponge group (SIS sponge), positive control group (Bio-Oss granules and Bio-Gide membrane) and control group(no treatment). The animals were sacrificed 4 weeks and 12 weeks after operation, and micro computed tomography (Micro-CT) was applied to measure the bone volume fraction (BV/TV) and bone mineralized density (BMD). The data were analyzed with one-way ANOVA. Results: The average pore diameter of the SIS sponge was (194.90±30.39) μm, the porosity was 92.31%±0.24%, the water absorption rate was 771.50%±40.90%, and the compressive elastic modulus was (2.20±0.19) kPa. There was no significant difference in cell proliferation ability between SIS sponge and control group (P>0.05). Micro-CT quantitative results showed that BV/TV of SIS sponge group (52.81%±3.21%) and positive control group (58.30%±9.36%) were significantly higher than that of control group (38.65%±4.80%) 4 weeks after operation (P <0.05). The BMD of SIS sponge group [(887.09±61.02) mg/cm3], positive control group [(952.05±132.78) mg/cm3] and control group [(879.29±74.27) mg/cm3] showed no statistical difference 4 weeks after operation (P>0.05). The BV/TV of positive control group (60.57%± 6.56%) was significantly higher than that of SIS sponge group (47.89%±3.59%) and control group (42.99%±2.54%) 12 weeks after operation (P < 0.05). BMD of SIS sponge group [(1047±89.95) mg/cm3] and positive control group [(1101.37±98.85) mg/cm3] were significantly higher than that of control group [(890.36±79.79) mg/cm3] 12 weeks after operation (P <0.05). Conclusion: The SIS sponge has satisfying physicochemical properties and biocompatibility. The SIS sponge significantly increased bone volume fraction in the early stage of bone formation (4 weeks) and bone mineralized density in the late stage of bone formation (12 weeks).

Key words: Small intestinal submucosa sponge, Bone tissue engineering, Osteogenesis

中图分类号: 

  • R783.3

图1

动物实验手术过程"

图2

SIS海绵表面形貌"

图3

SIS海绵环境扫描电镜观察"

图4

SIS海绵对hBMSCs增殖的影响"

图5

术后4周拔牙窝新生骨冠状面、水平面、矢状面的Micro-CT扫描形态"

图6

术后12周拔牙窝新生骨冠状面、水平面、矢状面的Micro-CT扫描形态"

[1] Avilaortiz G, Elangovan S, Kramer KWO, et al. Effect of alveolar ridge preservation after tooth extraction: A systematic review and meta-analysis[J]. J Dent Res, 2014,93(10):950-958.
doi: 10.1177/0022034514541127
[2] López M, Fanny, Gómez M, et al. Implants failures related to endodontic treatment. An observational retrospective study[J]. Clin Oral Implant Res, 2015,26(9):992-995.
doi: 10.1111/clr.2015.26.issue-9
[3] Horváth A, Mardas N, Mezzomo LA, et al. Alveolar ridge preservation. A systematic review[J]. Clin Oral Investig, 2013,17(2):341-363.
doi: 10.1007/s00784-012-0758-5 pmid: 22814758
[4] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012,30(10):546-554.
doi: 10.1016/j.tibtech.2012.07.005
[5] 蒋欣泉. 骨缺损修复生物材料与骨再生[J]. 中华口腔医学杂志, 2017,52(10):600-604.
[6] Andrée B, Bär A, Haverich A, et al. Small intestinal submucosa segments as matrix for tissue engineering: review[J]. Tissue Eng Part B, 2013,19(4):279-291.
doi: 10.1089/ten.teb.2012.0583
[7] Nezhad ZM, Poncelet A, Kerchove LD, et al. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: A systematic review [J]. Interact Cardiovasc Thorac Surg, 2016,22(6):839-850.
doi: 10.1093/icvts/ivw020 pmid: 26912574
[8] Li M, Zhang C, Mao Y, et al. A cell-engineered small intestinal submucosa-based bone mimetic construct for bone regeneration[J]. Tissue Eng Part A, 2018,24(13):1099-1111.
doi: 10.1089/ten.tea.2017.0407
[9] 房艳, 倪伟民, 单伟, 等. 海绵状的小肠粘膜下层促进成骨样细胞增殖分化[J]. 中国生物工程杂志, 2013,33(6):18-23.
[10] Kim KS, Lee J Y, Kang YM, et al. Small intestine submucosa sponge for in vivo support of tissue-engineered bone formation in the presence of rat bone marrow stem cells[J]. Biomaterials, 2010,31(6):1104-1113.
doi: 10.1016/j.biomaterials.2009.10.020
[11] Lin X, Chen J, Qiu P, et al. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration[J]. Osteoarthritis Cartilage, 2018,26(3):433-444.
doi: 10.1016/j.joca.2017.12.001 pmid: 29233641
[12] Cunniffe GM, Díazpayno PJ, Ramey JS, et al. Growth plate extracellular matrix-derived scaffolds for large bone defect healing[J]. Eur Cells Mater, 2017,33(1):130-142.
[13] Wang W, Zhang X, Chao NN, et al. Preparation and charac-terization of proangiogenic gel derived from small intestinal submucosa[J]. Acta Biomaterialia, 2016,29(1):135-148.
doi: 10.1016/j.actbio.2015.10.013
[14] Lin X, Robinson M, Petrie T, et al. Small intestinal submucosa-derived extracellular matrix bioscaffold significantly enhances angiogenic factor secretion from human mesenchymal stromal cells[J]. Stem Cell Res Ther, 2015,6(1):164-176.
doi: 10.1186/s13287-015-0165-3
[15] Kim MS, Hong KD, Shin HW, et al. Preparation of porcine small intestinal submucosa sponge and their application as a wound dressing in full-thickness skin defect of rat[J]. Int J Biol Macromol, 2005,36(1/2):54-60.
doi: 10.1016/j.ijbiomac.2005.03.013
[16] Li M, Zhang C, Cheng M, et al. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering[J]. Mater Sci Eng C Biomim Supramol Syst, 2017,75(6):149-156.
doi: 10.1016/j.msec.2017.02.042
[17] Dimitriou R, Mataliotakis GI, Calori GM, et al. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence[J]. BMC Med, 2012,10(1):81-105.
doi: 10.1186/1741-7015-10-81
[18] Rouwkema J, Rivron NC, Blitterswijk CAV. Vascularization in tissue engineering[J]. Trends Biotechnol, 2008,26(8):434-441.
doi: 10.1016/j.tibtech.2008.04.009
[19] Bolaños MAC, Buttigieg J, Triana JCB. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration[J]. Mater Sci Eng C Biomim Supramol Syst, 2017,72(3):519-525.
doi: 10.1016/j.msec.2016.11.113
[20] 孙慧哲, 田伟, 曾亮, 等. 猪小肠黏膜下基质海绵的制备[J]. 中国组织工程研究, 2016,20(21):3110-3116.
[21] Sarkar AD, Singhvi N, Shetty JN, et al. The local effect of alendronate with intra-alveolar collagen sponges on post extraction alveolar ridge resorption: A clinical trial[J]. J Oral Maxillofac Surg, 2015,14(2):344-356.
doi: 10.1007/s12663-014-0633-9
[22] Gilbert TW, Stewartakers AM, Simmonsbyrd A, et al. Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair[J]. J Bone Joint Surg Am, 2007,89(3):621-630.
doi: 10.2106/JBJS.E.00742 pmid: 17332112
[23] Wu W, Li B, Liu Y, et al. Effect of multilaminate small intestinal submucosa as a barrier membrane on bone formation in a rabbit mandible defect model[J]. Biomed Res Int, 2018(2):1-11.
[24] Kim JJ, Schwarz F, Song HY, et al. Ridge preservation of extraction sockets with chronic pathology using Bio-Oss Collagen with or without collagen membrane: An experimental study in dogs[J]. Clin Oral Implant Res, 2017(28):727-733.
[25] Wang F, Li Q, Wang Z. A comparative study of the effect of Bio-Oss® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting [J]. J Oral Pathol Med, 2017,46(7):528-536.
doi: 10.1111/jop.12507 pmid: 27682609
[1] 李榕,陈科龙,王勇,刘云松,周永胜,孙玉春. 骨组织工程支架3D打印系统的建立与支架宏微结构精度的可控性评价[J]. 北京大学学报(医学版), 2019, 51(1): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!