北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (3): 471-478. doi: 10.19723/j.issn.1671-167X.2024.03.014

• 论著 • 上一篇    下一篇

远程医疗对我国公立医院运营的影响

冉珂欣,李与涵,冯文*()   

  1. 北京大学公共卫生学院卫生政策与管理学系,北京 100191
  • 收稿日期:2024-02-18 出版日期:2024-06-18 发布日期:2024-06-12
  • 通讯作者: 冯文 E-mail:fengwenmail@sina.com

Influence of telemedicine on the operation of public hospitals in China

Kexin RAN,Yuhan LI,Wen FENG*()   

  1. Department of Health Policy and Management, Peking University School of Public Health, Beijing 100191, China
  • Received:2024-02-18 Online:2024-06-18 Published:2024-06-12
  • Contact: Wen FENG E-mail:fengwenmail@sina.com

RICH HTML

  

摘要:

目的: 分析远程医疗功能对公立医院运营的影响,特别关注其对不同专业技术等级医院的异质性作用,以深入理解远程医疗在弥补医疗资源配置不均衡方面的现实意义。方法: 利用《2022卫生健康信息化统计调查数据报告》调查数据,对8 944家公立医院进行横断面研究,使用多元线性模型、倾向性评分匹配(propensity score matching, PSM)、分组回归等方法,评估远程医疗对医院收入、诊疗人次、住院人次的影响。结果: 有35.51%的公立医院开通了远程医疗,医院等级、医院类别、所在区域、隶属关系、床位数都对医院运营状况有显著影响。开通远程医疗对公立医院收入、诊疗人次和出院人次均有显著提升作用。PSM结果显示,其对医院收入、诊疗人次、出院人次的净效应分别为0.191 (P < 0.01)、0.216 (P < 0.01)、0.353 (P < 0.01)。异质性检验显示,远程医疗对二级医院的收入和诊疗人次具有显著正向影响,系数分别为0.088 (P < 0.05)和0.127 (P < 0.01);对一级及以下医院的出院人次影响更大,系数为1.203 (P < 0.01);但对三级医院整体收入和业务能力并无显著影响。结论: 远程医疗的开通对公立医院的收入和业务能力增加均有显著促进作用,但在不同等级的医院之间存在差异性,对基层医疗机构的影响更为显著,对改善基层公立医院的运营状况起到积极作用。

关键词: 远程医疗, 公立医院, 医院收入, 会诊

Abstract:

Objective: Telemedicine, as an information-based tool, is widely recognized as an effective solution for compensating for the imbalanced allocation of medical resources in China. This study specifi-cally aimed to analyze the impact of telemedicine functions on the operational efficiency of public hospitals, with a particular focus on their heterogeneous effects on hospitals of different levels. Methods: A cross-sectional research design was used based on the 2022 Health Informatization Statistical Survey data, and 8 944 public hospitals were used as research objects to analyze the impact of telemedicine on hospital revenues and business capacity. Multivariate linear model, propensity score matching (PSM), and grouped regression methods were employed to evaluate the impact of telemedicine on hospital revenues, number of consultations, and the number of discharges. Results: The descriptive results showed that telemedicine was available in 35.51% of public hospitals. The analysis also demonstrated that various factors, such as hospital level, academic category, area of the hospital, administrational level and number of beds all had a significant influence on the operation of the hospital. Moreover, the regression results showed that opening telemedicine could increase hospital revenues by 0.140 (P < 0.01), hospital consultations by 0.136 (P < 0.01), and the number of discharges by 0.316 (P < 0.01). After correcting for endogeneity using the propensity score matching, the results showed that the effect of opening telemedicine on hospital revenues, consultations, and the number of discharges was 0.191 (P < 0.01), 0.216 (P < 0.01), and 0.353 (P < 0.01), respectively. Further heterogeneity analysis was conducted to explore the differential effects of telemedicine on hospitals of different levels. Grouped regression showed that telemedicine had a positive impact on the income of secondary hospitals, with a coefficient of 0.088 (P < 0.05), and it had a more significant positive impact on hospital consultations in secondary hospitals, with a coefficient of 0.127 (P < 0.01). An even greater impact on the number of discharges in primary hospitals, with a coefficient of 1.203 (P < 0.01). Telemedicine, on the other hand, did not have a significant positive impact on the overall revenue and operational capacity of tertiary hospitals. Conclusion: Telemedicine had a significant promoting effect on hospital revenues, hospital consultations and the number of discharges, and this effect was differentiated between hospitals of different levels. Through the construction of telemedicine, primary hospitals were able to significantly improve their business capacity and revenue, which played a positive role in improving the operation of primary public hospitals.

Key words: Telemedicine, Public hospitals, Hospital revenue, Consultation

中图分类号: 

  • R197

表1

主要变量的描述统计(n=8 944)"

Variables n (%) or $\bar x \pm s$Dependent variable
Hospital revenue (F/t/β) Hospital consultations (F/t/β) Number of discharges (F/t/β)
Telemedicine
  Yes 3 176 (35.51) 19.048*** 17.542*** 20.430***
  No 5 768 (64.49)
Hospital level 2 643.946*** 1 663.037*** 1 300.762***
  Primary hospitals 1 576 (17.62)
  Secondary hospitals 4 825 (53.95)
  Other tertiary hospitals 1 028 (11.49)
  Tertiary first-class hospital 1 515 (16.94)
Academic category 27.140*** 172.278*** 103.792***
  Traditional Chinese medicine hospital 2 272 (25.40)
  Specialized hospitals 1 389 (15.53)
  General hospital 5 283 (59.07)
Area 29.750*** 36.153*** 14.700***
  Western regions 2 858 (31.95)
  Central regions 2 616 (29.25)
  Eastern regions 3 470 (38.80)
Administrational level 486.539*** 274.839*** 206.224***
  Other hospitals 1 446 (16.17)
  County hospitals 2 729 (30.51)
  County-level city hospitals 2 231 (24.94)
  Prefecture-level city hospitals 1 939 (21.68)
  Provincial hospitals 555 (6.21)
  National hospitals 44 (0.49)
Beds 526.275±602.097 0.002*** 0.002*** 0.003***
Provinces 8 944 (100.00) 24.167*** 27.619*** 11.654***

表2

开通远程医疗对医院收入对业务能力影响的多元线性回归"

VariableDependent variable
ln (hospital revenue) ln (hospital consultations) ln (number of discharges)
Telemedicine (Ref: no)
  Yes 0.140***(5.406) 0.136***(4.828) 0.316*** (7.134)
Hospital level (Ref: primary hospitals)
  Secondary hospitals 1.968*** (33.289) 1.628*** (25.176) 3.544*** (28.681)
  Other tertiary hospitals 2.686*** (36.447) 2.339*** (30.361) 4.349*** (32.468)
  Tertiary first-class hospital 2.983*** (35.345) 2.695*** (31.376) 4.447*** (29.185)
Academic category (Ref: traditional Chinese medicine hospital)
  Specialized hospitals -0.016 (-0.359) -0.654*** (-12.043) -0.613*** (-6.274)
  General hospital 0.343*** (11.388) 0.369*** (11.293) 0.308*** (5.826)
Area (Ref: Western region)
  Central regions 0.765*** (5.488) 1.079*** (9.455) 1.106*** (3.531)
  Eastern regions 2.007*** (13.899) 2.039*** (13.584) 1.332*** (4.093)
Administrational level (Ref: other hospitals)
  County hospitals 0.995*** (18.242) 0.851*** (14.256) 1.722*** (15.181)
  County-level city hospitals 0.918*** (14.641) 0.777*** (11.309) 1.282*** (10.681)
  Prefecture-level city hospitals 0.795*** (12.911) 0.510*** (7.339) 0.902*** (7.410)
  Provincial hospitals 0.755*** (7.495) 0.339*** (3.466) 0.601*** (3.863)
  National hospitals 0.955*** (4.803) 0.668*** (3.280) 0.662* (1.949)
Beds 0.001*** (24.641) 0.001*** (20.910) 0.002*** (20.338)
Constant 7.146*** (49.985) 7.816*** (64.493) 1.774*** (5.734)
Provinces fixed effect Yes Yes Yes
n 8 941 8 943 8 917
R2 0.662 0.546 0.514

表3

匹配变量平衡性检验"

Variable MatchingMeanBias/% Reduct bias/%t test
Treated Controlt P>|t|
Hospital level Unmatched 2.482 2.165 34.0 99.7 15.36 < 0.001
Matched 2.482 2.483 -0.1 -0.04 0.968
Academic category Unmatched 2.340 2.335 0.5 -164.7 0.23 0.816
Matched 2.340 2.328 1.4 0.54 0.590
Area Unmatched 2.012 2.099 -10.3 89.8 -4.70 < 0.001
Matched 2.012 2.004 1.0 0.41 0.679
Affiliation Unmatched 2.855 2.657 16.9 87.4 7.62 < 0.001
Matched 2.855 2.830 2.1 0.85 0.395
Beds Unmatched 636.410 465.740 28.1 83.1 12.95 < 0.001
Matched 636.410 607.610 4.7 1.76 0.078
Province Unmatched 38.946 36.788 14.4 78.7 6.51 < 0.001
Matched 38.946 39.406 -3.1 -1.24 0.214

图1

倾向性评分匹配前(左)与匹配后(右)的核密度函数"

表4

远程医疗对医院运营的平均处理效应"

MethodDependent variable
ln (hospital revenue) ln (hospital consultations) ln (number of discharges)
ATT t ATT t ATT t
Nearest neighbor matching 1 ∶1 0.168*** 2.91 0.194*** 3.56 0.388*** 4.51
Nearest neighbor matching 1 ∶3 0.154*** 3.32 0.208*** 4.33 0.285*** 4.06
Radius matching 0.271*** 6.27 0.271*** 6.52 0.463*** 6.98
Kernel matching 0.169*** 2.83 0.191*** 3.17 0.274*** 3.16
Mean 0.191 0.216 0.353

表5

远程医疗对不同等级医院收入影响的异质性分析"

Itemsln (hospital revenue)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 0.258* (1.834) 0.088*** (3.503) -0.003 (-0.046) 0.028 (0.752)
Control variable Yes Yes Yes Yes
n 1 575 4 825 1 027 1 514
R2 0.244 0.517 0.381 0.657

表6

远程医疗对不同等级医院诊疗人次影响的异质性分析"

Itemsln (hospital consultations)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 0.149 (0.966) 0.127*** (4.259) -0.006 (-0.093) 0.023 (0.548)
Control variable Yes Yes Yes Yes
n 1 576 4 824 1 028 1 515
R2 0.117 0.451 0.441 0.546

表7

远程医疗对不同等级医院出院人次影响的异质性分析"

Itemsln (number of discharges)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 1.203*** (4.564) 0.126*** (2.912) -0.035 (-0.533) 0.066 (1.430)
Control variable Yes Yes Yes Yes
n 1 556 4 819 1 028 1 514
R2 0.245 0.458 0.496 0.515
1 国家卫生部与国家人口计划生育委员会. 卫生计生委关于推进医疗机构远程医疗服务的意见[EB/OL]. [2014-08-21]. https://www.gov.cn/gongbao/content/2014/content_2792664.htm.
2 国家卫生计生委办公厅. 国家卫生计生委办公厅关于印发远程医疗信息系统建设技术指南的通知[EB/OL]. [2014-12-10]. http://www.nhc.gov.cn/mohwsbwstjxxzx/s8555/201501/120c912de1c4474c95b345d001271368.shtml.
3 Huang EY , Knight S , Guetter CR , et al.Telemedicine and telementoring in the surgical specialties: A narrative review[J].Am J Surg,2019,218(4):760-766.
doi: 10.1016/j.amjsurg.2019.07.018
4 Nesemann JM , Munoz M , Talero SL , et al.Telemedicine for screening eye disease in the remote Peruvian Amazon: Proof-of-concept[J].Trans R Soc Trop Med Hyg,2022,116(6):589-591.
doi: 10.1093/trstmh/trab175
5 占玉芬, 陈文军, 李艳.我院跨国式远程医疗的实践与探索[J].中华医院管理杂志,2019,35(3):213-215.
doi: 10.3760/cma.j.issn.1000-6672.2019.03.010
6 Lu W , Hou H , Ma R , et al.Influencing factors of patient satisfaction in teleconsultation: A cross-sectional study[J].Technol Forecast Soc,2021,168,120775.
doi: 10.1016/j.techfore.2021.120775
7 Yanicelli LM , Vegetti M , Goy CB , et al.SiTe iC: A telemoni-toring system for heart failure patients[J].Int J Med Inform,2020,141,104204.
doi: 10.1016/j.ijmedinf.2020.104204
8 汪晓珊. 喀什地区远程医疗的社会经济效益分析研究[D]. 新疆: 石河子大学, 2014.
9 Chauhan A , Jakhar SK , Jabbour CJC .Implications for sustainable healthcare operations in embracing telemedicine services during a pandemic[J].Technol Forecast Soc,2022,176,121462.
doi: 10.1016/j.techfore.2021.121462
10 Kim DS , Chu H , Min BK , et al.Telemedicine center of Korean Medicine for treating patients with COVID-19: A retrospective analysis[J].Integr Med Res,2020,9(3):100492.
doi: 10.1016/j.imr.2020.100492
11 Gudi N , Konapur R , John O , et al.Telemedicine supported strengthening of primary care in WHO South East Asia region: Lessons from the COVID-19 pandemic experiences[J].BMJ Innovations,2021,7(3):580-585.
doi: 10.1136/bmjinnov-2021-000699
12 Lilly CM , Motzkus C , Rincon T , et al.ICU telemedicine program financial outcomes[J].Chest,2017,151(2):286-297.
doi: 10.1016/j.chest.2016.11.029
13 路阳, 汪晓珊, 邹小广, 等.新疆地区远程会诊系统应用的经济效益案例分析[J].中国卫生经济,2015,34(4):71-73.
14 国家卫生计生委办公厅. 国家卫生计生委办公厅关于印发医院信息化建设应用技术指引(2017年版)的通知[EB/OL]. [2017-12-13]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=aed4d45c 8f75467fb208b4707cceb0ad.
15 Kim SA , Park WS , Chun TJ , et al.Association of the implementation of PACS with hospital revenue[J].J Digit Imaging,2002,15(4):247-253.
doi: 10.1007/s10278-002-0025-4
16 Lee J , Choi JY .Texas hospitals with higher health information technology expenditures have higher revenue: A longitudinal data analysis using a generalized estimating equation model[J].BMC Health Serv Res,2016,16,117.
doi: 10.1186/s12913-016-1367-9
17 Rosenbaum PR , Rubin DB .The central role of the propensity score in observational studies for causal effects[J].Biometrika,1983,70(1):41-55.
doi: 10.1093/biomet/70.1.41
18 管德坤, 孙自学.新时期我国远程医疗发展驱动、阻碍因素及建设重点分析[J].中国医院,2020,24(4):56-58.
doi: 10.3969/j.issn.1671-9174.2020.04.005
19 陈强.高级计量经济学及Stata应用[M].北京: 高等教育出版社,2014.
20 Zhao M , Hamadi H , Rob HD , et al.The relationship between health information technology laboratory tracking systems and hospital financial performance and quality[J].Hosp Top,2019,97(3):99-106.
doi: 10.1080/00185868.2019.1623735
21 Zhao M , Hamadi H , Xu J , et al.Telehealth and hospital perfor-mance: Does it matter?[J].J Telemed Telecare,2022,28(5):360-370.
doi: 10.1177/1357633X20932440
22 罗益佳, 周典, 徐慧, 等.基于史密斯模型的远程医疗政策执行分析[J].南京医科大学学报(社会科学版),2020,20(3):210-214.
23 胡文秀.远程医疗对提升卫生服务水平的促进作用及对策建议[J].学习与实践,2018,(1):80-84.
24 焦建鹏, 徐静, 王炳坤, 等.医联体远程医疗协作网建设与思考——以河南省人民医院为例[J].中国农村卫生事业管理,2022,42(7):511-514.
25 孙倩倩, 周守君.我国远程医疗的现状、问题及发展对策[J].南京医科大学学报(社会科学版),2022,22(1):25-30.
26 陈凤, 吴杨.远程医疗服务模式下提升医联体内基层卫生服务能力的实践[J].重庆医学,2020,49(10):1706-1708.
doi: 10.3969/j.issn.1671-8348.2020.10.036
27 李艳, 邹卿云, 尹传东, 等.农村边远地区远程医疗的社会效益和经济效益分析[J].中国卫生经济,2009,28(12):53-54.
28 王淼, 晏雪鸣, 徐剑云, 等.跨区域专科远程医疗协同体系的建立与探索[J].现代医院,2022,22(6):915-918.
29 Omboni S .Telemedicine during the COVID-19 in Italy: A missed opportunity?[J].Telemed J E Health,2020,26(8):973-975.
30 Khodadad-Saryazdi A .Exploring the telemedicine implementation challenges through the process innovation approach: A case study research in the French healthcare sector[J].Technovation,2021,107,102273.
[1] 景日泽,章湖洋,徐婷婷,张鲁豫,方海. 北京市三级公立医院效率及其影响因素[J]. 北京大学学报(医学版), 2018, 50(3): 408-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!