论著

二氧化硫对大鼠肢体缺血再灌注致急性肺损伤中肺泡巨噬细胞凋亡的影响

  • 赵彦瑞 ,
  • 刘洋 ,
  • 王东 ,
  • 吕文睿 ,
  • 周君琳
展开
  • 首都医科大学附属北京朝阳医院骨科, 北京 100020

收稿日期: 2017-04-06

  网络出版日期: 2019-04-26

基金资助

国家自然科学基金(81070050);北京市自然科学基金(7152061)

Effects of sulfur dioxide on alveolar macrophage apoptosis in acute lung injury induced by limb ischemia/reperfusion in rats

  • Yan-rui ZHAO ,
  • Yang LIU ,
  • Dong WANG ,
  • Wen-rui LV ,
  • Jun-lin ZHOU
Expand
  • Department of Orthopedics, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China

Received date: 2017-04-06

  Online published: 2019-04-26

Supported by

the National Natural Science Foundation of China(81070050);Beijing Natural Science Foundation(7152061)

摘要

目的: 探讨二氧化硫(sulfur dioxide,SO2)在肢体缺血再灌注(ischemia/reperfusion,I/R)致急性肺损伤(acute lung injury,ALI)保护作用中对肺泡巨噬细胞(alveolar macrophage,AM)凋亡的影响,为控制炎症反应寻找新的靶点。方法: 分离培养AM,应用肢体缺血再灌注致ALI大鼠血清制备细胞模型,给予外源性SO2,然后检测线粒体膜电位以及线粒体通透性转换孔(mitochondrial permeability transition pore,mPTP)开放情况,AM凋亡情况及凋亡相关Bcl-2、Caspase-3分子蛋白表达情况。结果: 与对照组相比,I/R组红、绿荧光的比值下降,吸光度显著降低,AM凋亡率增加到43.81%±2.40%,Caspase-3蛋白表达升高,Bcl-2蛋白表达下降;而与I/R组比较,I/R+SO2组红、绿荧光的比值升高,吸光度增高,AM凋亡率减少37.01%±1.93%,Caspase-3蛋白表达降低,Bcl-2蛋白表达升高。结论: 外源性SO2可通过抑制线粒体途径改善巨噬细胞的凋亡。

本文引用格式

赵彦瑞 , 刘洋 , 王东 , 吕文睿 , 周君琳 . 二氧化硫对大鼠肢体缺血再灌注致急性肺损伤中肺泡巨噬细胞凋亡的影响[J]. 北京大学学报(医学版), 2019 , 51(2) : 239 -244 . DOI: 10.19723/j.issn.1671-167X.2019.02.007

Abstract

Objective: To investigate the effect of sulfur dioxide (SO2) on the apoptosis of alveolar macrophage (AM) in lung protection of limb ischemia/reperfusion (I/R) induced acute lung injury (ALI), and to find a new target for the control of inflammatory response.Methods: Twenty pathogen-free, adult male Sprague-Dawley (SD) rats (180-230 g) were used in this study. Five rats were to be used for limb ischemia/reperfusion, then plasma was extracted as ischemia/reperfusion serum stimulation. Fifteen rats were to be used for extracting AM by bronchoalveolar lavage. The AM was isolated and cultured, then the cell count was adjusted to 1×10 6/mL, and randomly divided into the following 4 groups (n=6): control group, I/R group, SO2 group, and I/R+SO2 group. The I/R group was given ischemia/reperfusion serum (500 μg/L) to stimulate 6 h; the SO2 group was given an SO2 donor, Na2SO3/NaHSO3 [(0.54 mmol/kg) / (0.18 mmol/kg)]; and the I/R+SO2 group was given the same ischemia/reperfusion serum and Na2SO3/NaHSO3 at the same time. The level of mitochondrial membrane potential, the state of mitochondrial permeability transition pore (mPTP), the rate of AM apoptosis, the expression of Bcl-2 and Caspase-3 proteins were detected by flow cytometry, microplate reader and Western blotting.Results: Compared with the control group, in the I/R group, the ratio of red to green fluorescence and the absorbance decreased significantly, the percentage of apoptotic cells increased obviously, the apoptotic rate was 43.81%±2.40%, Caspase-3 protein expression increased, Bcl-2 protein expression decreased. While compared with the I/R group, in the I/R+SO2 group, the ratio of red to green fluorescence and the absorbance increased significantly; the apoptotic rate decreased to 37.01%±1.93%, Caspase-3 protein expression decreased, Bcl-2 protein expression increased.Conclusion: Exo-genous SO2 has the effect of accelerating AM apoptosis by stimulating mPTP to open and mitochondrial membrane potential to decrease; besides, exogenous SO2 could stimulate AM to secrete more anti-inflammatory cytokines and less inflammatory cytokines. In conclusion, exogenous SO2 can reduce macrophage apoptosis by inhibiting mitochondrial pathways.

参考文献

[1] Steiger AK, Yang Y, Royzen M , et al. Bio-orthogonal “click-and-release” donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S)[J]. Chem Commun (Camb), 2017,53(8):1378-1380.
[2] Steiger AK, Pardue S, Kevil CG , et al. Self-immolative thiocarbamates provide access to triggered H2S donors and analyte replacement fluorescent probes[J]. J Am Chem Soc, 2016,138(23):7256-7259.
[3] Aggarwal NR, D’Alessio FR, Tsushima K , et al. Moderate oxygen augments lipopolysaccharide-induced lung injury in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2010,298(3):L371-L381.
[4] Howard KM . Differential expression of platelet-activating factor acetylhydrolase in lung macrophages[J]. Am J Physiol Lung Cell Mol Physiol, 2009,297(6):L1141-L1150.
[5] Z’Graggen BR, Tornic J, Muller-Edenborn B , et al. Acute lung injury: apoptosis in effector and target cells of the upper and lower airway compartment[J]. Clin Exp Immunol, 2010,161(2):324-331.
[6] Meng Z, Liu Y . Cell morphological ultrastructural changes in va-rious organs from mice exposed by inhalation to sulfur dioxide[J]. Inhal Toxicol, 2007,19(6-7):543-551.
[7] Ubuka T, Yuasa S, Ohta J , et al. Formation of sulfate from L-cysteine in rat liver mitochondria[J]. Acta Med Okayama, 1990,44(2):55-64.
[8] 赵彦瑞, 刘洋, 王东 , 等. PI3KAkt和JAK2STAT3信号转导通路在SO2抗大鼠肢体缺血再灌注致急性肺损伤中的作用[J]. 中华病理生理杂志, 2015,31(11):2076-2082.
[9] Huang XL, Liu Y, Zhou JL , et a1. Role of sulfur dioxide in acute lung injury following limb ischemia/reperfusion in rats[J]. J Biochem Mol Toxicol, 2013,27(8):389-397.
[10] Zhao YR, Wang D, Liu Y , et al. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats[J]. J Physiol Sci, 2016,66(3):229-239.
[11] Cohen SM, Siddiqi FA, Darakchiev B , et al. Attenuation of acute lung injury caused by hind-limb ischemia-reperfusion injury by butyrolactone anti-inflammatory agent FLl003[J]. J Trauma, 1997,43(2):247-252.
[12] Javadov S, Choi A, Rajapurohitam V , et al. NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associa-ted with attenuation of the mitochondrial permeability transition[J]. Cardiovasc Res, 2008,77(2):416-424.
[13] Kaltenbach JP, Jennings RB . Metabolism of ischemic cardiac muscle[J]. Circ Res, 1960(8):207-213.
[14] Ward PA . Editorial commentary: New strategies for treatment of humans with acute lung injury/acute respiratory distress syndrome[J]. Clin Infect Dis, 2015,60(4):596-597.
[15] Tauber AI . Metchnikoff and the phagocytosis theory[J]. Nat Rev Mol Cell Biol, 2003,4(11):897-901.
[16] Ovchinnikov, Dmitry A . Macrophages in the embryo and beyond: Much more than just giant phagocytes[J]. Genesis, 2008,46(9):447-462.
[17] Yong Y, Matthew S, Wittwer J , et al. Dichamanetin inhibits cancer cell growth by affecting ROS-related signaling components through mitochondrial-mediated apoptosis[J]. Anticancer Res, 2013,33(12):5349-5355.
文章导航

/