论著

纳米二氧化钛与葡萄糖亚慢性联合经口暴露对幼年大鼠血清叶酸和维生素B12水平的影响

  • 陈章健 ,
  • 韩硕 ,
  • 郑湃 ,
  • 周淑佩 ,
  • 贾光
展开
  • 1. 北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191
    2. 北京大学医学部实验动物科学部,北京 100191

收稿日期: 2019-12-12

  网络出版日期: 2020-06-30

基金资助

国家重点研发计划项目(2017YFC1600204);国家自然科学基金(81703257)

Effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats

  • Zhang-jian CHEN ,
  • Shuo HAN ,
  • Pai ZHENG ,
  • Shu-pei ZHOU ,
  • Guang JIA
Expand
  • 1. Department of Occupational and Enviromental Health Sciences, Peking University School of Public Health, Beijing 100191, China
    2. Department of Laboratory Animal Science, Peking University Health Science Center, Beijing 100191, China

Received date: 2019-12-12

  Online published: 2020-06-30

Supported by

National Key Research and Develop Program of the Ministry of Science and Technology of China(2017YFC1600204);National Natural Science Foundation of China(81703257)

摘要

目的 探讨纳米二氧化钛与葡萄糖亚慢性联合暴露对幼年大鼠血清叶酸和维生素B12的影响。方法 对实验所用纳米二氧化钛的粒径、形状、晶型和溶液体系中的团聚程度等物理化学性质进行详细表征。80只4周龄清洁级SD大鼠按体质量随机分为8组(每组10只,雌雄各半)。每天灌胃给予0、2、10、50 mg/kg纳米二氧化钛,分别加或不加1.8 g/kg葡萄糖。染毒90 d后进行血清叶酸和维生素B12含量检测。结果 纳米二氧化钛晶型为锐钛矿,近球形,平均粒径为(24±5) nm。在雄性幼年大鼠中,与对照组相比,纳米二氧化钛(10 mg/kg)加葡萄糖染毒可导致血清叶酸浓度明显增加,差异具有统计学意义(P<0.05)。在雌性和雄性幼年大鼠中,与单纯葡萄糖(1.8 g/kg)染毒组相比,高剂量纳米二氧化钛(50 mg/kg)加葡萄糖可导致血清叶酸浓度明显降低,差异具有统计学意义(P<0.05)。经过联合作用分析,纳米二氧化钛与葡萄糖联合暴露对雌性幼年SD大鼠血清叶酸浓度的影响存在明显拮抗作用。纳米二氧化钛与葡萄糖联合暴露对幼年SD大鼠血清维生素B12浓度的影响较小,未见明显交互作用。仅发现与单纯葡萄糖(1.8 g/kg)染毒组相比,雄性大鼠低剂量(2 mg/kg)纳米二氧化钛加葡萄糖染毒组血清维生素B12浓度明显上升,差异具有统计学意义(P<0.05)。结论 纳米二氧化钛和葡萄糖亚慢性联合经口暴露可以对幼年SD大鼠血清叶酸浓度产生影响,两者存在拮抗作用。

本文引用格式

陈章健 , 韩硕 , 郑湃 , 周淑佩 , 贾光 . 纳米二氧化钛与葡萄糖亚慢性联合经口暴露对幼年大鼠血清叶酸和维生素B12水平的影响[J]. 北京大学学报(医学版), 2020 , 52(3) : 451 -456 . DOI: 10.19723/j.issn.1671-167X.2020.03.009

Abstract

Objective: To explore the effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats.Methods: At first, the physical and chemical properties of titanium dioxide nanoparticles, such as particle size, shape, crystal form and agglomeration degree in solution system, were characterized in detail. Eighty 4-week-old young SD rats were randomly divided into 8 groups (10 rats in each group, half male and half female). The rats were exposed to titanium dioxide nanoparticles through intragastric administration at 0, 2, 10 and 50 mg/kg body weight with or without 1.8 g/kg glucose daily for 90 days. At last, the concentrations of serum folate and vitamin B12 were detected.Results: Titanium dioxide nanoparticles were anatase crystals, closely spherical shape, with an average particle size of (24±5) nm. In male young rats, compared with the control group, the serum folate concentration was significantly increased when exposed to titanium dioxide nanoparticles (10 mg/kg) and glucose. The difference was statistically significant (P<0.05). However, in female and male young rats, compared with glucose (1.8 g/kg) exposure group, titanium dioxide nanoparticles (50 mg/kg) and glucose significantly reduced the serum folate concentration. The difference was statistically significant (P<0.05). Through statistical analysis of factorial design and calculation of interaction, obvious antagonistic effect was observed between titanium dioxide nanoparticles and glucose on the serum folate concentration in the young female SD rats. The combined oral exposure of titanium dioxide nanoparticles and glucose had little effect on the concentration of serum vitamin B12 in the young SD rats, with no significant interaction between the two substances. It was only found that titanium dioxide nanoparticles (2 mg/kg) and glucose significantly increased the serum vitamin B12 concentration, compared with glucose (1.8 g/kg) exposure group. The difference was statistically significant (P<0.05).Conclusion: Subchronic combined oral exposure of titanium dioxide nanoparticles and glucose had an obvious antagonistic effect on serum folate concentrations in young SD rats.

参考文献

[1] Lim JH, Bae D, Fong A. Titanium dioxide in food products: quantitative analysis using ICP-MS and Raman spectroscopy[J]. J Agric Food Chem, 2018,66(51):13533-13540.
[2] FDA. Listing of color additives exempt from certification. In Code of Federal Regulations Title 21-Food and Drugs. 21 CFR 73.575. Washington, DC: US Government Printing Office, 2002.
[3] Singh T, Shukla S, Kumar P, et al. Application of nanotechnology in food science: Perception and overview[J]. Front Microbiol, 2017(8):1501.
[4] Yang Y, Doudrick K, Bi XY, et al. Characterization of food-grade titanium dioxide: The presence of nanosized particles[J]. Environ Sci Technol, 2014,48(11):6391-6400.
[5] Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environ Sci Technol, 2012,46(4):2242-2250.
[6] Winkler HC, Notter T, Meyer U, et al. Critical review of the safety assessment of titanium dioxide additives in food[J]. J Nanobiotechnology, 2018,16(1):51.
[7] Ruiz PA, Moron B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome[J]. Gut, 2017,66(7):1216-1224.
[8] Shrivastava R, Raza S, Yadav A, et al. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain[J]. Drug Chem Toxicol, 2014,37(3):336-347.
[9] Rollerova E, Tulinska J, Liskova A, et al. Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development[J]. Endocr Regul, 2015,49(2):97-112.
[10] Ervin RB, Kit BK, Carroll MD, et al. Consumption of added sugar among U.S. children and adolescents, 2005-2008[J]. NCHS data brief, 2012(87):1-8.
[11] Chen Z, Zhou D, Wang Y, et al. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration[J]. J Appl Toxicol, 2019,39(4):590-602.
[12] Czajka M, Sawicki K, Sikorska K, et al. Toxicity of titanium dioxide nanoparticles in central nervous system[J]. Toxicol In Vitro, 2015,29(5):1042-1052.
[13] Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production[J]. Nature, 2014,510(7504):298-302.
[14] Chen Z, Wang Y, Zhuo L, et al. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration[J]. Nanomedicine, 2015,11(7):1633-1642.
[15] Wang Y, Chen ZJ, Ba T, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles[J]. Small, 2013,9(9-10):1742-1752.
[16] Chen Z, Zhou D, Zhou S, et al. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague-Dawley rats[J]. J Appl Toxicol, 2019,39(5):807-819.
[17] Chen ZJ, Wang Y, Wang X, et al. Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration[J]. J Appl Toxicol, 2018,38(6):810-823.
文章导航

/