收稿日期: 2020-02-20
网络出版日期: 2020-12-13
基金资助
宁夏回族自治区重点研发计划课题(2018BEG02012)
Application of mixed reality technique for the surgery of oral and maxillofacial tumors
Received date: 2020-02-20
Online published: 2020-12-13
Supported by
Key Research and Development Program of Ningxia Hui Autonomous Region(2018BEG02012)
目的:探讨混合现实技术在口腔颌面部肿瘤手术中的应用价值。方法:选择2018年12月—2020年1月就诊于北京大学口腔医院口腔颌面外科需行手术治疗的肿瘤患者,将患者术前增强CT原始数据导入星图医学影像工作站(维卓致远,中国北京),分别对肿瘤、血管、骨骼等重要解剖结构进行三维模型重构,显示其术前空间关系,对重点结构进行标记,并进行术前规划。通过混合现实技术在术区立体显示三维重建模型,术者利用简单手势在术中保持无菌状态下对眼前的三维重建模型进行调整,观察肿瘤范围、大小、位置及其与周围临近重要解剖结构的关系。应用混合现实技术辅助手术进行,手术开始前进行三维模型配准,肿瘤显露过程中进行术中验证,术后利用Likert量表对混合现实技术的应用效果进行评价。结果:入选的8例患者均顺利实施了混合现实技术辅助下的肿瘤切除手术,手术过程中三维重建模型平均配准时间为12.0 min,术者在所有病例的手术中均都能直观、立体地观看肿物以及周围解剖结构的三维重建模型,并可在术中自行调整图像。Likert量表评价结果显示:在感知准确性、帮助确定解剖部位、术中图像引导作用,以及改善手术安全性的潜力方面均获得较高评分(分别为4.22、4.19、4.16和4.28分)。8例患者术后愈合良好,无手术并发症发生。结论:混合现实技术能通过三维重建模型实时立体可视化,提供术区解剖结构信息,引导和修正手术操作,提高口腔颌面部肿瘤切除手术的准确性和安全性。
唐祖南 , Hui Yuh Soh , 胡耒豪 , 于尧 , 章文博 , 彭歆 . 混合现实技术在口腔颌面部肿瘤手术中的应用[J]. 北京大学学报(医学版), 2020 , 52(6) : 1124 -1129 . DOI: 10.19723/j.issn.1671-167X.2020.06.023
Objective: To explore the application of mixed reality technique for the surgery of oral and maxillofacial tumors. Methods: In this study, patients with a diagnosis of an oral and maxillofacial tumor who were referred to Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology from December 2018 to January 2020 were selected. The preoperative contrast-enhanced computed tomography data of the patients were imported into StarAtlas Holographic Medical Imaging System (Visual 3D Corp., Beijing, China). Three-dimensional (3D) model of tumor and key structures, such as skeleton and vessels were reconstructed to three-dimensionally present the spatial relationship between them, followed with the key structures delineation and preoperative virtual surgical planning. By using mixed reality technique, the real-time 3D model was displayed stereotactically in the surgical site. While keeping sterile during operation, the surgeon could use simple gestures to adjust the 3D model, and observed the location, range, and size of tumor and the key structures adjacent to the tumor. Mixed reality technique was used to assist the operation: 3D model registration was performed for guidance before tumor excision; intraoperative real-time verification was performed during tumor exposure and after excision of the tumor. The Likert scale was used to evaluate the application of mixed reality technique after the operation. Results: Eight patients underwent mixed reality assisted tumor resection, and all of them successfully completed the operation. The average time of the 3D model registration was 12.0 minutes. In all the cases, the surgeon could intuitively and three-dimensionally observe the 3D model of the tumor and the surrounding anatomical structures, and could adjust the model during the operation. The results of the Likert scale showed that mixed reality technique got high scores in terms of perceptual accuracy, helping to locate the anatomical parts, the role of model guidance during surgery, and the potential for improving surgical safety (4.22, 4.19, 4.16, and 4.28 points respectively). Eight patients healed well without perioperative complications. Conclusion: By providing real-time stereotactic visualization of anatomy of surgical site and guiding the operation process through 3D model, mixed reality technique could improve the accuracy and safety of the excision of oral and maxillofacial tumors.
| [1] | 章文博, 于尧, 王洋, 等. 数字化外科技术在上颌骨缺损重建中的应[J]. 北京大学学报(医学版), 2017,49(1):1-5. |
| [2] | Bouchard C, Magill JC, Nikonovskiy V, et al. Osteomark: a surgical navigation system for oral and maxillofacial surgery[J]. Int J Oral Maxillofac Surg, 2012,41(2):265-270. |
| [3] | Haddock NT, Monaco C, Weimer KA, et al. Increasing bony contact and overlap with computer-designed offset cuts in free fibula mandible reconstruction[J]. J Craniofac Surg, 2012,23(6):1592-1595. |
| [4] | Pietruski P, Majak M, wiatek-Najwer E, et al. Navigation-guided fibula free flap for mandibular reconstruction: A proof of concept study[J]. J Plast Reconstr Aesthet Surg, 2019,72(4):572-580. |
| [5] | Tepper OM, Rudy HL, Lefkowitz A, et al. Mixed reality with holoLens: where virtual reality meets augmented reality in the operating room[J]. Plast Reconstr Surg, 2017,140(5):1066-1070. |
| [6] | Mitsuno D, Ueda K, Hirota Y, et al. Effective application of mixed reality device hololens: simple manual alignment of surgical field and holograms[J]. Plast Reconstr Surg, 2019,143(2):647-651. |
| [7] | Incekara F, Smits M, Dirven C, et al. Clinical feasibility of a wearable mixed-reality device in neurosurgery[J]. World Neurosurg, 2018,118:e422-e427. |
| [8] | Zhu H, Li Y, Wang C, et al. A first attempt of inferior vena cava filter successfully guided by a mixed-reality system: a case report[J]. J Geriatr Cardiol, 2019,16(7):575-577. |
| [9] | Saito Y, Sugimoto M, Imura S, et al. Intraoperative 3d hologram support with mixed reality techniques in liver surgery[J]. Ann Surg, 2020,271(1):e4-e7. |
| [10] | Rose AS, Kim H, Fuchs H, et al. Development of augmented-reality applications in otolaryngology-head and neck surgery[J]. Laryngoscope, 2019,129(S3):S1-S11. |
| [11] | 乔晨. 增强现实牙科虚拟手术的关键技术研究[D]. 北京理工大学, 2011. |
| [12] | 张益. 数字化外科技术及眼眶骨折精确重建[J]. 中华口腔医学杂志, 2012,47(8):463-465. |
| [13] | 于尧, 章文博, 王洋, 等. iPlan CMF软件辅助下增强CT三维重建在头颈部肿瘤治疗中的应用[J]. 北京大学学报(医学版), 2017,49(5):878-882. |
| [14] | 赵峰, 高勃, 刘震侠, 等. Dicom标准和Mimics软件辅助建立下颌骨三维有限元模型[J]. 西南国防医药, 2005,15(5):479-481. |
| [15] | Sauer IM, Queisner M, Tang P, et al. Mixed reality in visceral surgery: development of a suitable workflow and evaluation of intraoperative use-cases[J]. Ann Surg, 2017,266(5):706-712. |
| [16] | Léger é, Drouin S, Collins DL, et al. Quantifying attention shifts in augmented reality image-guided neurosurgery[J]. Healthc Technol Lett, 2017,4(5):188-192. |
| [17] | Khor WS, Baker B, Amin K, et al. Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls[J]. Ann Transl Med, 2016,4(23):454. |
| [18] | Gregory TM, Gregory J, Sledge J, et al. Surgery guided by mixed reality: presentation of a proof of concept[J]. Acta Orthop, 2018,89(5):480-483. |
| [19] | McJunkin JL, Jiramongkolchai P, Chung W, et al. Development of a mixed reality platform for lateral skull base anatomy[J]. Otol Neurotol, 2018,39(10):e1137-e1142. |
| [20] | 叶哲伟, 吴星火. 混合现实技术在骨科的最新应用进展[J]. 临床外科杂志, 2018,26(1):13-14. |
| [21] | Zhang WB, Mao C, Liu XJ, et al. Outcomes of orbital floor reconstruction after extensive maxillectomy using the computer-assisted fabricated individual titanium mesh technique[J]. J Oral Maxillofac Surg, 2015,73(10):2065. |
| [22] | Sukegawa S, Kanno T, Furuki Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery[J]. Jpn Dent Sci Rev, 2018,54(3):139-149. |
| [23] | 陈宝权, 秦学英. 混合现实中的虚实融合与人机智能交融[J]. 中国科学(信息科学), 2016,46(12):1737-1747. |
| [24] | Likert R. A technique for the measurement of attitudes[J]. Arch Psychol, 1932,22:5-55. |
/
| 〈 |
|
〉 |