述评

解析与重塑软骨组织修复再生微环境

  • 敖英芳 ,
  • 曹宸喜
展开
  • 北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京 100191

收稿日期: 2021-07-15

  网络出版日期: 2021-10-11

本文引用格式

敖英芳 , 曹宸喜 . 解析与重塑软骨组织修复再生微环境[J]. 北京大学学报(医学版), 2021 , 53(5) : 819 -822 . DOI: 10.19723/j.issn.1671-167X.2021.05.001

参考文献

[1] Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3):413-425.
[2] Simon TM, Jackson DW. Articular cartilage: Injury pathways and treatment options [J]. Sports Med Arthrosc Rev, 2018, 26(1):31-39.
[3] Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol, 2015, 11(1):21-34.
[4] Oldershaw RA. Cell sources for the regeneration of articular cartilage: The past, the horizon and the future [J]. Int J Exp Pathol, 2012, 93(6):389-400.
[5] Schindler OS. Current concepts of articular cartilage repair [J]. Acta Orthop Belg, 2011, 77(6):709-726.
[6] Hirano Y, Ishiguro N, Sokabe M, et al. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type Ⅰ collagen gel [J]. J Biotechnol, 2008, 133(2):245-252.
[7] Liu Q, Hu X, Zhang X, et al. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression [J]. Sci Rep, 2016, 6:37268.
[8] Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis [J]. Mol Ther Nucleic Acids, 2017, 7:223-230.
[9] Liu Q, Hu X, Zhang X, et al. The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis [J]. Mol Ther, 2016, 24(10):1726-1733.
[10] Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis [J]. Mol Ther, 2015, 23(8):1331-1340.
[11] Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 “Sponge” in human cartilage degradation [J]. Sci Rep, 2016, 6:22572.
[12] Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis [J]. Arthritis Rheumatol, 2014, 66(4):969-978.
[13] Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development [J]. Nat Commun, 2019, 10(1):1914.
[14] Cheng J, Hu X, Dai L, et al. Inhibition of transforming growth factor beta-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis [J]. Sci Rep, 2016, 6:34497.
[15] Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7 [J]. Front Cell Dev Biol, 2021, 9:638382.
[16] Pi Y, Zhang X, Shao Z, et al. Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice [J]. Gene Ther, 2015, 22(6):439-448.
[17] Pi Y, Zhang X, Shi J, et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display [J]. Biomaterials, 2011, 32(26):6324-6332.
[18] Ogura T, Bryant T, Merkely G, et al. Survival analysis of revision autologous chondrocyte implantation for failed ACI [J]. Am J Sports Med, 2019, 47(13):3212-3220.
[19] Shao Z, Zhang X, Pi Y, et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo [J]. Biomate-rials, 2012, 33(12):3375-3387.
[20] Huang H, Zhang X, Hu X, et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration [J]. Biomaterials, 2014, 35(36):9608-9619.
[21] Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration [J]. Biomaterials, 2021, 269:120539.
[22] Zhang W, Ling C, Zhang A, et al. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration [J]. Bioact Mater, 2020, 5(4):832-843.
[23] Hu X, Zhu J, Li X, et al. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo [J]. Biomaterials, 2015, 52:441-451.
[24] Zhang X, Zheng Z, Liu P, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair [J]. Biomaterials, 2008, 29(35):4616-4629.
[25] Dai L, He Z, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: A technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture [J]. Am J Sports Med, 2014, 42(3):583-591.
[26] Dai L, He Z, Jiang Y, et al. One-step strategy for cartilage repair using acellular bone matrix scaffold based in situ tissue engineering technique in a preclinical minipig model [J]. Am J Transl Res, 2019, 11(10):6650-6659.
[27] Meng Q, Man Z, Dai L, et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration [J]. Sci Rep, 2015, 5:17802.
[28] Meng Q, Hu X, Huang H, et al. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models [J]. Acta Biomater, 2017, 53:279-292.
[29] Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bioink in extrusion-based 3D cell printing [J]. Biofabrication, 2020, 12(4):045011.
[30] Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo [J]. Adv Mater, 2017, 29():1701089.1-7.
文章导航

/