收稿日期: 2021-10-08
网络出版日期: 2022-02-21
基金资助
国家临床重点专科建设项目(PKUSSNMP-201901);北京大学口腔医院临床新技术新疗法项目(PKUSSNCT-21B01)
Marginal features of CAD/CAM laminate veneers with different materials and thicknesses
Received date: 2021-10-08
Online published: 2022-02-21
Supported by
National Clinical Key Discipline Construction Project(PKUSSNMP-201901);Program for New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-21B01)
目的: 评价不同材料及厚度椅旁计算机辅助设计和计算机辅助制作(computer-aided design and computer-aided manufacturing,CAD/CAM)瓷贴面的边缘粗糙度和边缘密合度,旨在为瓷贴面的临床应用提供参考。方法: 在树脂人工牙上进行对接型瓷贴面牙体预备,利用扫描仪扫描预备体,利用椅旁切削设备CAD/CAM瓷贴面。根据陶瓷材料类型(玻璃基陶瓷和树脂基陶瓷)及贴面厚度(0.3 mm和0.5 mm)将贴面分为4组(n=9),共36个。利用体式显微镜拍摄瓷贴面边缘形貌的数码照片,在软件内测量边缘粗糙度;利用间隙检查剂和数字化扫描与测量方法评价瓷贴面的边缘密合度;同时利用万能力学试验机测试玻璃基陶瓷和树脂基陶瓷条形试件(n=20)的力学性能。结果: 厚度为0.3 mm和0.5 mm玻璃基陶瓷贴面的边缘粗糙度分别为(24.48±5.55) μm和(19.06±5.75) μm,差异有统计学意义(P<0.001);厚度为0.3 mm和0.5 mm树脂基陶瓷贴面的边缘粗糙度分别为(6.13±1.27) μm和(6.84±2.19) μm,差异无统计学意义(P>0.05);玻璃基陶瓷贴面的边缘粗糙度大于树脂基陶瓷,差异有统计学意义(P<0.001)。厚度为0.3 mm和0.5 mm玻璃基陶瓷贴面的边缘密合度分别为(66.30±26.71) μm和(85.48±30.44) μm,厚度为0.3 mm和0.5 mm树脂基陶瓷贴面的边缘密合度分别为(56.42±19.27) μm和(58.36±8.33) μm,4组间差异均无统计学意义(P>0.05)。玻璃基陶瓷的弯曲强度为(327.40±54.25) MPa,弯曲模量为(44.40±4.39) GPa,回弹模量为(1.24±0.37) MPa;树脂基陶瓷的弯曲强度为(173.71±16.61) MPa,弯曲模量为(11.88±0.51) GPa,回弹模量为(1.29±0.27) MPa;玻璃基陶瓷的弯曲强度和弯曲模量大于树脂基陶瓷,差异有统计学意义(P<0.001),但两种材料的回弹模量差异无统计学意义(P>0.05)。结论: 椅旁CAD/CAM玻璃基陶瓷贴面的边缘粗糙度大于树脂基陶瓷贴面,但二者的边缘密合度无显著差异。增加贴面厚度可降低玻璃基陶瓷贴面的边缘粗糙度,但对树脂基陶瓷贴面的边缘粗糙度无影响。
李怡 , 王丽瑜 , 刘晓强 , 周倜 , 吕季喆 , 谭建国 . 不同材料及厚度椅旁CAD/CAM瓷贴面的边缘特征[J]. 北京大学学报(医学版), 2022 , 54(1) : 140 -145 . DOI: 10.19723/j.issn.1671-167X.2022.01.022
Objective: To analyze the marginal roughness and marginal fitness of chairside computer-aided design and computer-aided manufacturing (CAD/CAM) laminate veneers with different materials and thicknesses, and to provide a reference for the clinical application of laminate veneers. Methods: The butt-to-butt type laminate veneers were prepared on resin typodonts, the preparations were scanned, and the laminate veneers were manufactured by chairside CAD/CAM equipment. The laminate veneers were divided into four groups (n=9) according to the materials (glass-matrix ceramics and resin-matrix ceramics) and thickness (0.3 mm and 0.5 mm) of the veneers, with a total of 36. The marginal topo-graphies of each laminate veneer were digitally recorded by stereomicroscope, and the marginal rough-nesses of the laminate veneers were determined by ImageJ software. The marginal fitness of the laminate veneers was measured by a fit checker and digital scanning and measuring method. At the same time, the mechanical properties of glass-matrix ceramic and resin-matrix ceramic bars (n=20) were tested by a universal testing device. Results: The marginal roughness of 0.3 mm and 0.5 mm glass-matrix ceramic laminate veneers was (24.48±5.55) μm and (19.06±5.75) μm, respectively, with a statistically significant difference (P<0.001). The marginal roughness of 0.3 mm and 0.5 mm resin-matrix ceramic laminate veneers was (6.13±1.27) μm and (6.84±2.19) μm, respectively, without a statistically significant difference (P>0.05). The marginal roughness of the glass-matrix ceramic laminate veneers was higher than that of the resin-matrix ceramic laminate veneers with a statistically significant difference (P<0.001). The marginal fitness of 0.3 mm and 0.5 mm glass-matrix ceramic laminate veneers were (66.30±26.71) μm and (85.48±30.44) μm, respectively. The marginal fitness of 0.3 mm and 0.5 mm resin-matrix ceramic laminate veneers were (56.42±19.27) μm and (58.36±8.33) μm, respectively. There was no statistically significant difference among the 4 groups (P>0.05). For glass-matrix ceramics, the flexural strength was (327.40±54.25) MPa, the flexural modulus was (44.40±4.39) GPa, and the modulus of resilience was (1.24±0.37) MPa. For resin-matrix ceramics, the flexural strength was (173.71±16.61) MPa, the flexural modulus was (11.88±0.51) GPa, and the modulus of resilience was (1.29±0.27) MPa. The flexural strength and modulus of glass-matrix ceramics were significantly higher than those of resin-matrix ceramics (P<0.001), but there was no statistically significant difference in the modulus of resilience between the two materials (P>0.05). Conclusion: The marginal roughness of CAD/CAM glass-matrix ceramic laminate veneers is greater than that of resin-matrix ceramic laminate veneers, but there was no statistically significant difference in marginal fitness among them. Increasing the thickness can reduce the marginal roughness of glass-matrix ceramic laminate veneers, but has no effect on the marginal roughness of resin-matrix ceramic laminate veneers.
| [1] | Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth[J]. J Dent Res, 2018, 97(10):1082-1091. |
| [2] | Padrós R, Giner L, Herrero-Climent M, et al. Influence of the CAD-CAM systems on the marginal accuracy and mechanical pro-perties of dental restorations[J]. Int J Env Res Pub He, 2020, 17(12):4276. |
| [3] | Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications[J]. J Dent Res, 2014, 93(12):1232-1234. |
| [4] | Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering[J]. Dent Clin North Am, 2017, 61(4):797-819. |
| [5] | 中华口腔医学会口腔美学专业委员会, 中华口腔医学会口腔材料专业委员会. 全瓷美学修复材料临床应用专家共识[J]. 中华口腔医学志, 2019, 54(12):825-828. |
| [6] | Lambert H, Durand JC, Jacquot B, et al. Dental biomaterials for chairside CAD/CAM: State of the art[J]. J Adv Prosthodont, 2017, 9(6):486-495. |
| [7] | Yamaguchi S, Kani R, Kawakami K, et al. Fatigue behavior and crack initiation of CAD/CAM resin composite molar crowns[J]. Dent Mater, 2018, 34(10):1578-1584. |
| [8] | Gracis S, Thompson VP, Ferencz JL, et al. A new classification system for all-ceramic and ceramic-like restorative materials[J]. Int J Prosthodont, 2015, 28(3):227-235. |
| [9] | Chavali R, Nejat AH, Lawson NC. Machinability of CAD-CAM materials[J]. J Prosthet Dent, 2017, 118(2):194-199. |
| [10] | Alqahtani F. Marginal fit of all-ceramic crowns fabricated using two extraoral CAD/CAM systems in comparison with the conventional technique[J]. Clin Cosmet Inv Dent, 2017(9):13-18. |
| [11] | Bindl A, Mörmann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations[J]. J Oral Rehabil, 2005, 32(6):441-447. |
| [12] | Memari Y, Mohajerfar M, Armin A, et al. Marginal adaptation of CAD/CAM all-ceramic crowns made by different impression methods: A literature review[J]. J Prosthodont, 2019, 28(2):536-544. |
| [13] | Contrepois M, Soenen A, Bartala, et al. Marginal adaptation of ceramic crowns: A systematic review[J]. J Prosthet Dent, 2013, 110(6):447-454. |
| [14] | Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials[J]. J Prosthet Dent, 2015, 114(4):587-593. |
| [15] | 刘晓强, 谭建国. 一步一步做好微创修复的贴面牙体预备[J]. 中华口腔医学杂志, 2021, 56(3):306-310. |
| [16] | Lee H, Kim HS, Noh K, et al. A simplified method for evaluating the 3-dimensional cement space of dental prostheses by using a digital scanner[J]. J Prosthet Dent, 2017, 118(5):584-586. |
| [17] | Yang Y, Yang Z, Zhou J, et al. Effect of tooth preparation design on marginal adaptation of composite resin CAD-CAM onlays[J]. J Prosthet Dent, 2020, 124(1):88-93. |
| [18] | Awad D, Stawarczyk B, Liebermann A, et al. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness[J]. J Prosthet Dent, 2015, 113(6):534-540. |
| [19] | 李德利, 谭建国. 一步一步做好全瓷修复体抛光[J]. 中华口腔医学杂志, 2021, 56(4):396-400. |
| [20] | Wright MD, Masri R, Driscoll CF, et al. Comparison of three systems for the polishing of an ultra-low fusing dental porcelain[J]. J Prosthet Dent, 2004, 92(5):486-490. |
| [21] | Freire Y, Gonzalo E, Lopez-Suarez C, et al. Evaluation of the marginal fit of monolithic crowns fabricated by direct and indirect digitization[J]. J Prosthodont Res, 2021, 65(3):291-297. |
| [22] | Dureja I, Yadav B, Malhotra P, et al. A comparative evaluation of vertical marginal fit of provisional crowns fabricated by computer-aided design/computer-aided manufacturing technique and direct (intraoral technique) and flexural strength of the materials: An in vitro study[J]. J Indian Prosthodont Soc, 2018, 18(4):314-320. |
| [23] | Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques[J]. J Prosthet Dent, 2018, 119(4):545-551. |
| [24] | Schaefer O, Watts DC, Sigusch BW, et al. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: A three-dimensional analysis of accuracy and reproducibility[J]. Dent Mater, 2012, 28(3):320-326. |
| [25] | 林红. 口腔材料学[M]. 2版. 北京: 北京大学医学出版社, 2013: 12-13. |
/
| 〈 |
|
〉 |