收稿日期: 2022-05-09
网络出版日期: 2022-10-14
基金资助
国家自然科学基金(72125009);北大百度基金(2020BD004);北大百度基金(2020BD005)
Effect of modification of antihypertensive medications on the association of nitrogen dioxide long-term exposure and chronic kidney disease
Received date: 2022-05-09
Online published: 2022-10-14
Supported by
the National Natural Science Foundation of China(72125009);the PKU-Baidu Fund(2020BD004);the PKU-Baidu Fund(2020BD005)
目的: 探讨抗高血压药物对二氧化氮(nitrogen dioxide,NO2)和慢性肾脏病(chronic kidney disease,CKD)关联的修饰效应。方法: 基于中国CKD流行病学调查研究的2007—2010年全国成年人代表性横断面数据进行NO2暴露数据的收集与匹配,按照是否合并高血压和使用抗高血压药物进行分层,采用广义相加混合效应模型研究不同人群NO2长期暴露与CKD的关联效应及差异,分别利用自然样条平滑函数拟合NO2和CKD的暴露反应关系,分析抗高血压药物对NO2-CKD关联及暴露反应曲线的修饰效应。结果: 共纳入45 136例研究对象,平均年龄为(49.5±15.3)岁,NO2年平均暴露浓度为(7.2±6.4) μg/m3,使用抗高血压药物者共6 517人(14.4%),CKD患者为4 833人(10.7%)。调整混杂因素后,合并高血压、未使用抗高血压药物的人群中,NO2长期暴露能导致CKD风险显著增加(OR:1.38,95%CI:1.24~1.54,P < 0.001);使用抗高血压药物的人群中,NO2长期暴露与CKD风险无显著关联(OR:0.96,95%CI:0.86~1.07,P=0.431)。NO2-CKD的暴露反应曲线显示,NO2暴露与CKD的关联存在一定的非线性趋势。抗高血压药物对NO2-CKD关联和暴露反应曲线均具有显著的效应修饰作用(交互项P值< 0.001)。结论: NO2的长期暴露与CKD风险的关联受到抗高血压药物的修饰作用,使用抗高血压药物可有效降低NO2的长期暴露对CKD的影响。
马麟 , 吴静依 , 李双成 , 李鹏飞 , 张路霞 . 抗高血压药物对二氧化氮长期暴露与慢性肾脏病关联的修饰效应[J]. 北京大学学报(医学版), 2022 , 54(5) : 1047 -1055 . DOI: 10.19723/j.issn.1671-167X.2022.05.035
Objective: To investigate the potential effect of modification of antihypertensive medications on the association of nitrogen dioxide (NO2) long-term exposure and chronic kidney disease (CKD). Methods: Data of the national representative sample of adult population from the China National Survey of Chronic Kidney Disease (2007-2010) were included in the analyses, and exposure data of NO2 were collected and matched. Generalized mixed-effects models were used to analyze the associations between NO2 and CKD, stratified by the presence of hypertension and taking antihypertensive medications. The stratified exposure-response curves of NO2 and CKD were fitted using the natural spine smoothing function. The modifying effects of antihypertensive medications on the association and the exposure-response curve of NO2 and CKD were analyzed. Results: Data of 45 136 participants were included, with an average age of (49.5±15.3) years. The annual average exposure concentration of NO2 was (7.2±6.4) μg/m3. Altogether 6 517 (14.4%) participants were taking antihypertensive medications, and 4 833 (10.7%) participants were identified as having CKD. After adjustment for potential confounders, in the hypertension population not using antihypertensive medications, long-term exposure to NO2 was associated with a significant increase risk of CKD (OR: 1.38, 95%CI: 1.24-1.54, P < 0.001); while in the hypertension population using antihypertensive medications, no significant association between long-term exposure to NO2 and CKD (OR: 0.96, 95%CI: 0.86-1.07, P=0.431) was observed. The exposure-response curve of NO2 and CKD suggested that there was a non-linear trend in the association between NO2 and CKD. The antihypertension medications showed significant modifying effects both on the association and the exposure-response curve of NO2 and CKD (interaction P < 0.001). Conclusion: The association between long-term exposure to NO2 and CKD was modified by antihypertensive medications. Taking antihypertensive medications may mitigate the effect of long-term exposure to NO2 on CKD.
| 1 | World Health Organization. Ambient (outdoor) air pollution [EB/OL]. (2021-09-22) [2022-03-07]. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. |
| 2 | Li X , Jin L , Kan H . Air pollution: A global problem needs local fixes[J]. Nature, 2019, 570 (7762): 437- 439. |
| 3 | Orellano P , Reynoso J , Quaranta N , et al. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis[J]. Environ Int, 2020, 142, 105876. |
| 4 | Lu JP , Lu Y , Wang XC , et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)[J]. Lancet, 2017, 390 (10112): 2549- 2558. |
| 5 | Zhang L , Wang F , Wang L , et al. Prevalence of chronic kidney disease in China: A cross-sectional survey[J]. Lancet, 2012, 379 (9818): 815- 822. |
| 6 | Wu MY , Lo WC , Chao CT , et al. Association between air pollutants and development of chronic kidney disease: A systematic review and meta-analysis[J]. Sci Total Environ, 2020, 706, 135522. |
| 7 | Bowe B , Xie Y , Li T , et al. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: A cohort study[J]. Lancet Planet Health, 2017, 1 (7): e267- e276. |
| 8 | 梁琛瑜, 王万州, 马麟, 等. 大气NO2长期暴露与中国成人慢性肾脏病的关联: 基于中国慢性肾脏病流行病学调查[J]. 环境与职业医学, 2021, 38 (6): 566- 572. |
| 9 | Cockwell P , Fisher LA . The global burden of chronic kidney disease[J]. Lancet, 2020, 395 (10225): 662- 664. |
| 10 | Murad MH , Larrea-Mantilla L , Haddad A , et al. Antihyperten-sive agents in older adults: A systematic review and meta-analysis of randomized clinical trials[J]. J Clin Endocrinol Metab, 2019, 104 (5): 1575- 1584. |
| 11 | Liu B , Wang Q , Wang Y , et al. Utilization of antihypertensive drugs among chronic kidney disease patients: Results from the Chinese cohort study of chronic kidney disease (C-STRIDE)[J]. J Clin Hypertens (Greenwich), 2020, 22 (1): 57- 64. |
| 12 | Ptinopoulou AG , Pikilidou MI , Lasaridis AN . The effect of antihypertensive drugs on chronic kidney disease: A comprehensive review[J]. Hypertens Res, 2013, 36 (2): 91- 101. |
| 13 | Sarnak MJ , Levey AS , Schoolwerth AC , et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention[J]. Circulation, 2003, 108 (17): 2154- 2169. |
| 14 | Brook RD , Franklin B , Cascio W , et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association[J]. Circulation, 2004, 109 (21): 2655- 2671. |
| 15 | Li G , Huang J , Wang J , et al. Long-term exposure to ambient PM(2.5) and increased risk of CKD prevalence in China[J]. J Am Soc Nephrol, 2021, 32 (2): 448- 458. |
| 16 | Geddes JA , Martin RV , Boys BL , et al. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations[J]. Environ Health Perspect, 2016, 124 (3): 281- 289. |
| 17 | Geddes JA , Martin RV , Boys BL , et al. Global 3-year running mean ground-level nitrogen dioxide (NO2) grids from GOME, SCIAMACHY and GOME-2[M]. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC), 2017. |
| 18 | Guo J , Xia F , Zhang Y , et al. Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: Implications for PM2.5 remote sensing[J]. Environ Pollut, 2017, 221, 94- 104. |
| 19 | Lv B , Hu Y , Chang HH , et al. Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations[J]. Sci Total Environ, 2017, 580, 235- 244. |
| 20 | Lee HJ , Liu Y , Coull BA , et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmos Chem Phys, 2011, 11 (15): 7991- 8002. |
| 21 | Levin A , Stevens PE , Bilous RW , et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int Suppl, 2013, 3 (1): 1- 105. |
| 22 | He D , Wu S , Zhao H , et al. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies[J]. J Diabetes Investig, 2017, 8 (5): 687- 696. |
| 23 | Yang BY , Qian Z , Li S , et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: A cross-sectional study with findings from the 33 Communities Chinese Health Study[J]. Lancet Planet Health, 2018, 2 (2): e64- e73. |
| 24 | Yang BY , Qian Z , Howard SW , et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis[J]. Environ Pollut, 2018, 235, 576- 588. |
| 25 | Cai Y , Zhang B , Ke W , et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis[J]. Hypertension, 2016, 68 (1): 62- 70. |
| 26 | Dadvand P , Nieuwenhuijsen MJ , Agustí à , et al. Air pollution and biomarkers of systemic inflammation and tissue repair in COPD patients[J]. Eur Respir J, 2014, 44 (3): 603- 613. |
| 27 | Kim HJ , Min JY , Min KB , et al. CDH13 gene-by-PM10 interaction effect on lung function decline in Korean men[J]. Chemosphere, 2017, 168, 583- 589. |
| 28 | Mills NL , Donaldson K , Hadoke PW , et al. Adverse cardiovascular effects of air pollution[J]. Nat Clin Pract Cardiovasc Med, 2009, 6 (1): 36- 44. |
| 29 | Pope CA 3rd , Bhatnagar A , Mccracken JP , et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation[J]. Circ Res, 2016, 119 (11): 1204- 1214. |
| 30 | Silverstein DM . Inflammation in chronic kidney disease: Role in the progression of renal and cardiovascular disease[J]. Pediatr Nephrol, 2009, 24 (8): 1445- 1452. |
| 31 | Gupta J , Mitra N , Kanetsky PA , et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC[J]. Clin J Am Soc Nephrol, 2012, 7 (12): 1938- 1946. |
| 32 | 纪培颖, 许雁集, 沈凌. 不同降压药对慢性肾脏病患者肾脏的保护作用[J]. 当代医学, 2019, 25 (13): 143- 145. |
| 33 | Abe M , Okada K , Maruyama T , et al. Comparison of the antiproteinuric effects of the calcium channel blockers benidipine and amlodipine administered in combination with angiotensin receptor blockers to hypertensive patients with stage 3-5 chronic kidney disease[J]. Hypertens Res, 2009, 32 (4): 270- 275. |
| 34 | 环境保护部, 国家质量监督检验检疫总局. GB 3095—2012环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012. |
| 35 | World Health Organization . Air quality guidelines: global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide[M]. Geneva: WHO, 2006. |
| 36 | Mehta AJ , Zanobetti A , Bind MA , et al. Long-term exposure to ambient fine particulate matter and renal function in older men: The veterans administration normative aging study[J]. Environ Health Perspect, 2016, 124 (9): 1353- 1360. |
| 37 | Szyszkowicz M , Rowe BH , Brook RD . Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension[J]. Can J Cardiol, 2012, 28 (3): 360- 366. |
| 38 | Nam YS , Cho KH , Kang HC , et al. Greater continuity of care reduces hospital admissions in patients with hypertension: An analysis of nationwide health insurance data in Korea, 2011-2013[J]. Health Policy, 2016, 120 (6): 604- 611. |
/
| 〈 |
|
〉 |