论著

转录通读环状RNA rt-circ-HS促进低氧诱导因子1α表达和肾癌细胞增殖与侵袭

  • 许云屹 ,
  • 苏征征 ,
  • 郑林茂 ,
  • 张孟尼 ,
  • 谭珺娅 ,
  • 杨亚蓝 ,
  • 张梦鑫 ,
  • 徐苗 ,
  • 陈铌 ,
  • 陈雪芹 ,
  • 周桥
展开
  • 1. 四川大学华西医院病理科,成都 610041
    2. 四川大学华西医院病理研究室,成都 610041

收稿日期: 2022-11-16

  网络出版日期: 2023-04-12

Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness

  • Yun-yi XU ,
  • Zheng-zheng SU ,
  • Lin-mao ZHENG ,
  • Meng-ni ZHANG ,
  • Jun-ya TAN ,
  • Ya-lan YANG ,
  • Meng-xin ZHANG ,
  • Miao XU ,
  • Ni CHEN ,
  • Xue-qin CHEN ,
  • Qiao ZHOU
Expand
  • 1. Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
    2. Research Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China

Received date: 2022-11-16

  Online published: 2023-04-12

摘要

目的: 鉴定肾癌细胞中由染色体14q23上相邻基因低氧诱导因子1α(hypoxia inducible factor 1α,HIF1α)和小核RNA激活复合多肽(small nuclear RNA activating complex polypeptide 1, SNAPC1) 形成的转录通读RNA及转录通读环状RNA(read-through circular RNA HIF1α-SNAPC1, rt-circ-HS),研究rt-circ-HS在肾癌细胞及组织样本中的表达、对肾癌细胞生物学行为的影响以及对其亲本分子HIF1α的调控机制。方法: 逆转录PCR(reverse transcription-polymerase chain reaction, RT-PCR)和Sanger测序检测不同肿瘤细胞中由HIF1α-SNAPC1形成的转录通读RNA和rt-circ-HS的表达。构建不同类型的肾细胞癌(renal cell carcinoma,RCC)组织芯片共437例,用原位杂交检测rt-circ-HS表达。采用小干扰RNA(small interference RNA,si-RNA)和人工过表达质粒干预rt-circ-HS,用细胞计数实验(cell counting kit 8,CCK8)、EdU掺入实验、Transwell细胞迁移和细胞侵袭实验分别检测rt-circ-HS对肾癌细胞增殖、迁移和侵袭的影响。用RT-PCR和Western blot验证干预rt-circ-HS对亲本分子HIF1α和SNAPC1表达的影响。构建包含rt-circ-HS、HIF1α 3′端非翻译区(3′ untranslated region, 3′ UTR)与微小RNA 539(microRNA 539,miR-539)结合序列的野生型和突变型质粒,用双荧光素酶报告基因系统检测rt-circ-HS、HIF1α 3′ UTR与miR-539的结合。结果: 发现一个新的rt-circ-HS,由HIF1α外显子(exon) 6-SNAPC1 exon 2转录通读本产生,在肾癌细胞786-O中高表达。Sanger测序证实rt-circ-HS全长1 144 nt,包括HIF1α exon 2-exon 6和SNAPC1 exon 2-exon 4,是一个新的转录通读环状RNA。原位杂交结果显示,rt-circ-HS在RCC中阳性表达率为67.5%(295/437),在不同类型RCC中表达率不同。发现miR-539是HIF1α的转录后负调控分子;rt-circ-HS作为分子海绵与miR-539结合,竞争性抑制miR-539与HIF1α 3′ UTR的结合,解除其对HIF1α的转录后负调控作用,促进亲本分子HIF1α表达及肾癌细胞增殖、迁移和侵袭。结论: rt-circ-HS作为分子海绵结合miR-539,抑制其对HIF1α的负调控作用,促进亲本分子HIF1α表达及肾癌细胞增殖、迁移和侵袭。

本文引用格式

许云屹 , 苏征征 , 郑林茂 , 张孟尼 , 谭珺娅 , 杨亚蓝 , 张梦鑫 , 徐苗 , 陈铌 , 陈雪芹 , 周桥 . 转录通读环状RNA rt-circ-HS促进低氧诱导因子1α表达和肾癌细胞增殖与侵袭[J]. 北京大学学报(医学版), 2023 , 55(2) : 217 -227 . DOI: 10.19723/j.issn.1671-167X.2023.02.004

Abstract

Objective: To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3′ untranslated region (3′ UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays. Results: We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α. Conclusion: The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.

参考文献

1 Zhou WY , Cai ZR , Liu J , et al. Circular RNA: Metabolism, functions and interactions with proteins[J]. Mol Cancer, 2020, 19 (1): 172.
2 Chen Q , Liu T , Bao Y , et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway[J]. Cancer Lett, 2020, 469, 68- 77.
3 Mao W , Wang K , Xu B , et al. ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma[J]. Mol Cancer, 2021, 20 (1): 142- 155.
4 van Zonneveld AJ , Kolling M , Bijkerk R , et al. Circular RNAs in kidney disease and cancer[J]. Nat Rev Nephrol, 2021, 17 (12): 814- 826.
5 Zhang Y , Gong M , Yuan H , et al. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation[J]. Cancer Discov, 2012, 2 (7): 598- 607.
6 Grosso AR , Leite AP , Carvalho S , et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma[J]. Elife, 2015, 4, e09214.
7 Pflueger D , Mittmann C , Dehler S , et al. Functional characterization of BC039389-GATM and KLK4-KRSP1 chimeric read-through transcripts which are up-regulated in renal cell cancer[J]. BMC Genomics, 2015, 16 (1): 247.
8 Chen N , Zhou Q . Constructing tissue microarrays without prefabricating recipient blocks: A novel approach[J]. Am J Clin Pathol, 2005, 124 (1): 103- 107.
9 Turajlic S , Swanton C , Boshoff C . Kidney cancer: The next decade[J]. J Exp Med, 2018, 215 (10): 2477- 2479.
10 Siegel RL , Miller KD , Fuchs HE , et al. Cancer statistics 2022[J]. CA Cancer J Clin, 2022, 72 (1): 7- 33.
11 Garje R , Elhag D , Yasin HA , et al. Comprehensive review of chromophobe renal cell carcinoma[J]. Crit Rev Oncol Hematol, 2021, 160, 103287.
12 Ji SQ , Su XL , Cheng WL , et al. Down-regulation of CD74 inhi-bits growth and invasion in clear cell renal cell carcinoma through HIF-1α pathway[J]. Urol Oncol, 2014, 32 (2): 153- 161.
13 Hu CJ , Wang LY , Chodosh LA , et al. Differential roles of hypo-xia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation[J]. Mol Cell Biol, 2003, 23 (24): 9361- 9374.
14 Shen C , Beroukhim R , Schumacher SE , et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene[J]. Cancer Discov, 2011, 1 (3): 222- 235.
15 Shinojima T , Oya M , Takayanagi A , et al. Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha[J]. Carcinogenesis, 2007, 28 (3): 529- 536.
16 Swiatek M , Jancewicz I , Kluebsoongnoen J , et al. Various forms of HIF-1alpha protein characterize the clear cell renal cell carcinoma cell lines[J]. IUBMB Life, 2020, 72 (6): 1220- 1232.
17 Vidal AF . Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells[J]. RNA Biol, 2020, 17 (12): 1823- 1826.
18 Yang X , Ye T , Liu H , et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer[J]. Mol Cancer, 2021, 20 (1): 4.
19 Wu X , Zhou J , Zhao L , et al. CircCYP24A1 hampered malignant phenotype of renal cancer carcinoma through modulating CMTM-4 expression via sponging miR-421[J]. Cell Death Dis, 2022, 13 (2): 190.
20 Wang X , Xing L , Yang R , et al. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC[J]. Mol Cancer, 2021, 20 (1): 91.
21 Abdelmohsen K , Panda AC , Munk R , et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017, 14 (3): 361- 369.
22 Khan FA , Nsengimana B , Khan NH , et al. Chimeric peptides/proteins encoded by circRNA: An update on mechanisms and functions in human cancers[J]. Front Oncol, 2022, 12, 781270.
23 Pintarelli G , Dassano A , Cotroneo CE , et al. Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma[J]. Oncotarget, 2016, 7 (19): 27889- 27898.
24 Choi ES , Lee H , Lee CH , et al. Overexpression of KLHL23 protein from read-through transcription of PHOSPHO2-KLHL23 in gastric cancer increases cell proliferation[J]. FEBS Open Bio, 2016, 6 (11): 1155- 1164.
25 Wang L , Xiong X , Yao Z , et al. Chimeric RNA ASTN2-PAPPA(as) aggravates tumor progression and metastasis in human esophageal cancer[J]. Cancer Lett, 2021, 501, 1- 11.
26 Qin F , Zhang Y , Liu J , et al. SLC45A3-ELK4 functions as a long non-coding chimeric RNA[J]. Cancer Lett, 2017, 404, 53- 61.
文章导航

/