论著

青少年特发性脊柱侧凸椎旁肌的病理特征

  • 郑丹枫 ,
  • 李君禹 ,
  • 李佳曦 ,
  • 张英爽 ,
  • 钟延丰 ,
  • 于淼
展开
  • 1. 北京大学基础医学院病理学系/北京大学第三医院病理科, 北京 100191
    2. 北京大学第三医院骨科, 北京 100191
    3. 北京大学第三医院脊柱疾病研究北京重点实验室, 北京 100191
    4. 北京大学基础医学院, 北京 100191
    5. 北京大学第三医院神经内科, 北京 100191

收稿日期: 2022-10-17

  网络出版日期: 2023-04-12

Pathologic features of paraspinal muscle biopsies in patients with adolescent idiopathic scoliosis

  • Dan-feng ZHENG ,
  • Jun-yu LI ,
  • Jia-xi LI ,
  • Ying-shuang ZHANG ,
  • Yan-feng ZHONG ,
  • Miao YU
Expand
  • 1. Department of Pathology, School of Basic Medical Sciences Peking University/Peking University Third Hospital, Beijing 100191, China
    2. Departmant of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
    3. Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
    4. School of Basic Medical Sciences, Peking University, Beijing 100191, China
    5. Departmant of Neurology, Peking University Third Hospital, Beijing 100191, China

Received date: 2022-10-17

  Online published: 2023-04-12

摘要

目的: 研究青少年特发性脊柱侧凸(adolescent idiopathic scoliosis, AIS)患者椎旁肌病理改变, 并进一步探讨抗肌萎缩蛋白(Dystrophin)在该病中的表达情况及其与病因的关系。方法: 收集2018年11月至2019年8月于北京大学第三医院诊断为AIS并接受后路侧弯矫形手术, 术中行凹侧顶椎椎旁肌活检患者18例。对肌肉活检组织进行规范化处理并切片进行常规苏木精-伊红(hematoxylin-eosin, HE)染色、多种组织化学染色以及抗肌萎缩蛋白各亚型、肌球蛋白、主要组织相容性复合体1(major histocompatibility complex 1, MHC-1)、CD4、CD8、CD20、CD68抗体的免疫组织化学染色及结果判读分析。此外, 根据Cobb角大小(≥55°或<55°)和Nash-Moe分类将活检标本分为不同组别, 进行相应病理改变的组间差异统计学比较。结果: 18例患者中, 重度AIS组(Cobb角≥55°)8例, 轻度AIS组(Cobb角 < 55°)10例, 两组患者椎旁肌均出现不同程度萎缩、变性, Dystrophin-3的免疫组织化学染色均不同程度缺失且表达模式异常。两组活检肌纤维的Dystrophin-2的免疫组织化学染色切片中的表达模式存在显著差异, 重度AIS组的Dystrophin-2表达异常或缺失更显著。根据Nash-Moe分型分组, 患者椎旁肌的Dystrophin-2表达模式也有显著差异, 表现为侧凸程度越重, Dystrophin-2表达异常越显著。此外, 椎旁肌肉组织的肌肉和肌腱中存在CD4+细胞和CD8+细胞的浸润, 而CD20+细胞为阴性。全部患者椎旁肌均有部分肌纤维呈MHC-1肌膜阳性表达。结论: AIS患者椎旁肌活检的组织学具有相似的特征性改变, 抗肌萎缩蛋白的表达不同程度降低或缺失, 并且与脊柱侧凸程度有一定相关性, 提示抗肌萎缩蛋白功能障碍在脊柱侧凸的发生和发展中具有一定的意义。同时, AIS的炎症改变以T细胞浸润为主要表现, 炎症细胞浸润、MHC-1表达与抗肌萎缩蛋白异常表达之间似有一定的相关性。沿此结果进一步的研究可能为AIS的诊断和针对椎旁肌病变的治疗开辟新的思路。

本文引用格式

郑丹枫 , 李君禹 , 李佳曦 , 张英爽 , 钟延丰 , 于淼 . 青少年特发性脊柱侧凸椎旁肌的病理特征[J]. 北京大学学报(医学版), 2023 , 55(2) : 283 -291 . DOI: 10.19723/j.issn.1671-167X.2023.02.012

Abstract

Objective: To characterize the paraspinal muscles of adolescent idiopathic scoliosis (AIS) patients, and to further explore its etiology. Methods: Clinical records and paraspinal muscle biopsies at the apex vertebra region during posterior scoliosis correction surgery of 18 AIS were collected from November 2018 to August 2019. Following standardized processing of fresh muscle tissue biopsy, serial sections with conventional hematoxylin-eosin (HE) and histochemical and immunohistochemical (IHC) with antibody Dystrophin-1 (R-domain), Dystrophin-2 (C-terminal), Dystrophin-3 (N-terminal), Dystrophin-total, Myosin (fast), major histocompatibility complex 1 (MHC-1), CD4, CD8, CD20, and CD68 staining were obtained. Biopsy samples were grouped according to the subjects' median Cobb angle (Cobb angle ≥ 55° as severe AIS group and Cobb angle < 55° as mild AIS group) and Nash-Moe's classification respectively, and the corresponding pathological changes were compared between the groups statistically. Results: Among the 18 AIS patients, 8 were in the severe AIS group (Cobb angle ≥55°) and 10 in the mild AIS group (Cobb angle < 55°). Both severe and mild AIS groups presented various of atrophy and degeneration of paraspinal muscles, varying degrees and staining patterns of immune-expression of Dystrophin-3 loss, especially Dystrophin-2 loss in severe AIS group with significant differences, as well as among the Nash-Moe classification subgroups. Besides, infiltration of CD4+ and CD8+ cells in the paraspinal muscles and tendons was observed in all the patients while CD20+ cells were null. The expression of MHC-1 on myolemma was present in some muscle fibers. Conclusion: The histologic of paraspinal muscle biopsy in AIS had similar characteristic changes, the expression of Dystrophin protein was significantly reduced and correlated with the severity of scoliosis, suggesting that Dystrophin protein dysfunctions might contribute to the development of scoliosis. Meanwhile, the inflammatory changes of AIS were mainly manifested by T cell infiltration, and there seemed to be a certain correlation between inflammatory cell infiltration, MHC-1 expression and abnormal expression of Dystrophin. Further research along the lines of this result may open up new ideas for the diagnosis of scoliosis and the treatment of paraspinal myopathy.

参考文献

1 Cheng JC , Castelein RM , Chu WC , et al. Adolescent idiopathic scoliosis[J]. Nat Rev Dis Primers, 2015, 1, 15030.
2 Weinstein SL . The natural history of adolescent idiopathic scoliosis[J]. J Pediatr Orthop, 2019, 39 (6): S44- S46.
3 Spencer GS , Eccles MJ . Spinal muscle in scoliosis: Part 2. The proportion and size of type 1 and type 2 skeletal muscle fibres measured using a computer-controlled microscope[J]. J Neurol Sci, 1976, 30 (1): 143- 154.
4 Fidler MW , Jowett RL . Muscle imbalance in the aetiology of sco-liosis[J]. J Bone Joint Surg B, 1976, 58 (2): 200- 201.
5 Khosla S , Tredwell SJ , Day B , et al. An ultrastructural study of multifidus muscle in progressive idiopathic scoliosis. Changes resulting from a sarcolemmal defect at the myotendinous junction[J]. J Neurol Sci, 1980, 46 (1): 13- 31.
6 Tidball JG . Myotendinous junction: Morphological changes and mechanical failure associated with muscle cell atrophy[J]. Exp Mol Pathol, 1984, 40 (1): 1- 12.
7 Wajchenberg M , Martins DE , Luciano RP , et al. Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: A cross-sectional study[J]. Medicine (Baltimore), 2015, 94 (8): e598.
8 Luciano Rde P , Puertas EB , Martins DE , et al. Adolescent idiopathic scoliosis without limb weakness: A differential diagnosis of core myopathy?[J]. BMC Musculoskelet Disord, 2015, 16, 179.
9 Zoabli G , Mathieu PA , Aubin CE . Magnetic resonance imaging of the erector spinae muscles in Duchenne muscular dystrophy: Implication for scoliotic deformities[J]. Scoliosis, 2008, 3, 21.
10 Nash CL Jr , Moe JH . A study of vertebral rotation[J]. J Bone Joint Surg Am, 1969, 51 (2): 223- 229.
11 Dubowitz V , Sewry CA , Oldfors A , et al. Muscle biopsy: A practical approach[M]. 4th ed. Oxford, England: Saunders Else-vier, 2013.
12 Altaf F , Gibson A , Dannawi Z , et al. Adolescent idiopathic sco-liosis[J]. BMJ, 2013, 346, f2508.
13 Brzoska E , Kalkowski L , Kowalski K , et al. Muscular contribution to adolescent idiopathic scoliosis from the perspective of stem cell-based regenerative medicine[J]. Stem Cells Dev, 2019, 28 (16): 1059- 1077.
14 Veldhuizen AG , Wever DJ , Webb PJ . The aetiology of idiopathic scoliosis: Biomechanical and neuromuscular factors[J]. Eur Spine J, 2000, 9 (3): 178- 184.
15 Meier MP , Klein MP , Krebs D , et al. Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1997, 22 (20): 2357- 2364.
16 Bylund P , Jansson E , Dahlberg E , et al. Muscle fiber types in thoracic erector spinae muscles[J]. Clin Orthop Relat Res, 1987, (214): 222- 228.
17 Mannion AF , Meier M , Grob D , et al. Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence[J]. Eur Spine J, 1998, 7 (4): 289- 293.
18 Hoffman EP , Brown RH Jr , Kunkel LM . Dystrophin: The protein product of the Duchenne muscular dystrophy locus[J]. Cell, 1987, 51 (6): 919- 928.
19 Ervasti JM , Campbell KP . Membrane organization of the dystrophin-glycoprotein complex[J]. Cell, 1991, 66 (6): 1121- 1231.
20 Houang EM , Sham YY , Bates FS , et al. Muscle membrane integrity in Duchenne muscular dystrophy: Recent advances in copolymer-based muscle membrane stabilizers[J]. Skelet Muscle, 2018, 8 (1): 31.
21 Yiu EM , Kornberg AJ . Duchenne muscular dystrophy[J]. J Paediatr Child Health, 2015, 51 (8): 759- 764.
22 Wilson K , Faelan C , Patterson-Kane JC , et al. Duchenne and Becker muscular dystrophies: A review of animal models, clinical end points, and biomarker quantification[J]. Toxicol Pathol, 2017, 45 (7): 961- 976.
23 Goebel HH , Sewry CA , Weller RO . Muscle disease: Pathology and genetics[M]. 2nd ed. New Jersey, USA: Wiley-Blackwell, 2013: 95- 100.
24 Gherardi RK . Pathogenic aspects of dermatomyositis, polymyositis and overlap myositis[J]. Presse Med, 2011, 40 (4 Pt 2): e209- e218.
25 Samaan MC , Missiuna P , Peterson D , et al. Understanding the role of the immune system in adolescent idiopathic scoliosis: Immunometabolic CONnections to Scoliosis (ICONS) study protocol[J]. BMJ Open, 2016, 6 (7): e011812.
26 Rudrapatna S , Peterson D , Missiuna P , et al. Understanding muscle-immune interactions in adolescent idiopathic scoliosis: A feasibility study[J]. Pilot Feasibility Stud, 2017, 3, 50.
27 Van Gennip JLM , Boswell CW , Ciruna B . Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis[J]. Sci Adv, 2018, 4 (12): eaav1781.
28 Dalkilic I , Kunkel LM . Muscular dystrophies: Genes to pathoge-nesis[J]. Curr Opin Genet Dev, 2003, 13 (3): 231- 238.
29 Fiorillo AA , Heier CR , Novak JS , et al. TNF-α-induced micro-RNAs control dystrophin expression in Becker muscular dystrophy[J]. Cell Rep, 2015, 12 (10): 1678- 1690.
文章导航

/