北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (2): 283-291. doi: 10.19723/j.issn.1671-167X.2023.02.012

• 论著 • 上一篇    下一篇

青少年特发性脊柱侧凸椎旁肌的病理特征

郑丹枫1,李君禹2,3,李佳曦4,张英爽5,钟延丰1,于淼2,3,*()   

  1. 1. 北京大学基础医学院病理学系/北京大学第三医院病理科, 北京 100191
    2. 北京大学第三医院骨科, 北京 100191
    3. 北京大学第三医院脊柱疾病研究北京重点实验室, 北京 100191
    4. 北京大学基础医学院, 北京 100191
    5. 北京大学第三医院神经内科, 北京 100191
  • 收稿日期:2022-10-17 出版日期:2023-04-18 发布日期:2023-04-12
  • 通讯作者: 于淼 E-mail:miltonyu@126.com

Pathologic features of paraspinal muscle biopsies in patients with adolescent idiopathic scoliosis

Dan-feng ZHENG1,Jun-yu LI2,3,Jia-xi LI4,Ying-shuang ZHANG5,Yan-feng ZHONG1,Miao YU2,3,*()   

  1. 1. Department of Pathology, School of Basic Medical Sciences Peking University/Peking University Third Hospital, Beijing 100191, China
    2. Departmant of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
    3. Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing 100191, China
    4. School of Basic Medical Sciences, Peking University, Beijing 100191, China
    5. Departmant of Neurology, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-10-17 Online:2023-04-18 Published:2023-04-12
  • Contact: Miao YU E-mail:miltonyu@126.com

摘要:

目的: 研究青少年特发性脊柱侧凸(adolescent idiopathic scoliosis, AIS)患者椎旁肌病理改变, 并进一步探讨抗肌萎缩蛋白(Dystrophin)在该病中的表达情况及其与病因的关系。方法: 收集2018年11月至2019年8月于北京大学第三医院诊断为AIS并接受后路侧弯矫形手术, 术中行凹侧顶椎椎旁肌活检患者18例。对肌肉活检组织进行规范化处理并切片进行常规苏木精-伊红(hematoxylin-eosin, HE)染色、多种组织化学染色以及抗肌萎缩蛋白各亚型、肌球蛋白、主要组织相容性复合体1(major histocompatibility complex 1, MHC-1)、CD4、CD8、CD20、CD68抗体的免疫组织化学染色及结果判读分析。此外, 根据Cobb角大小(≥55°或<55°)和Nash-Moe分类将活检标本分为不同组别, 进行相应病理改变的组间差异统计学比较。结果: 18例患者中, 重度AIS组(Cobb角≥55°)8例, 轻度AIS组(Cobb角 < 55°)10例, 两组患者椎旁肌均出现不同程度萎缩、变性, Dystrophin-3的免疫组织化学染色均不同程度缺失且表达模式异常。两组活检肌纤维的Dystrophin-2的免疫组织化学染色切片中的表达模式存在显著差异, 重度AIS组的Dystrophin-2表达异常或缺失更显著。根据Nash-Moe分型分组, 患者椎旁肌的Dystrophin-2表达模式也有显著差异, 表现为侧凸程度越重, Dystrophin-2表达异常越显著。此外, 椎旁肌肉组织的肌肉和肌腱中存在CD4+细胞和CD8+细胞的浸润, 而CD20+细胞为阴性。全部患者椎旁肌均有部分肌纤维呈MHC-1肌膜阳性表达。结论: AIS患者椎旁肌活检的组织学具有相似的特征性改变, 抗肌萎缩蛋白的表达不同程度降低或缺失, 并且与脊柱侧凸程度有一定相关性, 提示抗肌萎缩蛋白功能障碍在脊柱侧凸的发生和发展中具有一定的意义。同时, AIS的炎症改变以T细胞浸润为主要表现, 炎症细胞浸润、MHC-1表达与抗肌萎缩蛋白异常表达之间似有一定的相关性。沿此结果进一步的研究可能为AIS的诊断和针对椎旁肌病变的治疗开辟新的思路。

关键词: 脊柱侧凸, 椎旁肌, 活组织检查, 青少年, 抗肌萎缩蛋白

Abstract:

Objective: To characterize the paraspinal muscles of adolescent idiopathic scoliosis (AIS) patients, and to further explore its etiology. Methods: Clinical records and paraspinal muscle biopsies at the apex vertebra region during posterior scoliosis correction surgery of 18 AIS were collected from November 2018 to August 2019. Following standardized processing of fresh muscle tissue biopsy, serial sections with conventional hematoxylin-eosin (HE) and histochemical and immunohistochemical (IHC) with antibody Dystrophin-1 (R-domain), Dystrophin-2 (C-terminal), Dystrophin-3 (N-terminal), Dystrophin-total, Myosin (fast), major histocompatibility complex 1 (MHC-1), CD4, CD8, CD20, and CD68 staining were obtained. Biopsy samples were grouped according to the subjects' median Cobb angle (Cobb angle ≥ 55° as severe AIS group and Cobb angle < 55° as mild AIS group) and Nash-Moe's classification respectively, and the corresponding pathological changes were compared between the groups statistically. Results: Among the 18 AIS patients, 8 were in the severe AIS group (Cobb angle ≥55°) and 10 in the mild AIS group (Cobb angle < 55°). Both severe and mild AIS groups presented various of atrophy and degeneration of paraspinal muscles, varying degrees and staining patterns of immune-expression of Dystrophin-3 loss, especially Dystrophin-2 loss in severe AIS group with significant differences, as well as among the Nash-Moe classification subgroups. Besides, infiltration of CD4+ and CD8+ cells in the paraspinal muscles and tendons was observed in all the patients while CD20+ cells were null. The expression of MHC-1 on myolemma was present in some muscle fibers. Conclusion: The histologic of paraspinal muscle biopsy in AIS had similar characteristic changes, the expression of Dystrophin protein was significantly reduced and correlated with the severity of scoliosis, suggesting that Dystrophin protein dysfunctions might contribute to the development of scoliosis. Meanwhile, the inflammatory changes of AIS were mainly manifested by T cell infiltration, and there seemed to be a certain correlation between inflammatory cell infiltration, MHC-1 expression and abnormal expression of Dystrophin. Further research along the lines of this result may open up new ideas for the diagnosis of scoliosis and the treatment of paraspinal myopathy.

Key words: Scoliosis, Paraspinal muscles, Biopsy, Adolescent, Dystrophin protein

中图分类号: 

  • R682.3

表1

AIS患者的临床特征"

Patient no. Age/years Age of onset/years Nash-Moe classification Cobb curve angle of thoracic vertebra/(°)
1 12 12 51.4
2 16 16 58.5
3 18 18 73.6
4 22 22 25.8
5 15 15 28.3
6 16 16 29.9
7 20 20 76.5
8 27 27 62.5
9 16 16 33.3
10 16 16 55.1
11 15 15 56.8
12 13 13 57.5
13 15 15 65.6
14 12 12 58.1
15 15 15 44.8
16 14 14 24.7
17 16 16 45.4
18 12 12 70.9

图1

AIS患者椎旁肌活检切片"

表2

不同Cobb角分组AIS患者肌肉活检病理学特点(n=18)"

Pathological feature or staining pattern Severe scoliosis (Cobb≥55°, n=10) Mild scoliosis (Cobb < 55°, n=8) P
Atrophy degree 0.706
    Mild-moderate 0 1 (12.5)
    Moderate-severe 9 (90) 7 (87.5)
    Severe 1 (10) 0
Atrophy pattern 0.275
    Big group 1 (10) 3 (37.5)
    Small group 9 (90) 5 (62.5)
Degeneration of myofibers >0.999
    None 7 (70) 6 (75.0)
    Present 3 (30) 2 (25.0)
Edema 0.846
    None 4 (40) 4 (50.0)
    Few 4 (40) 2 (25.0)
    Most 2 (20) 2 (25.0)
Whorled fibers 0.321
    None 8 (80) 4 (50.0)
    Present 2 (20) 4 (50.0)
Hypertrophic fibers 0.183
    None 0 2 (25.0)
    Present 10 (100) 6 (75.0)
Internal nuclei >0.999
    None 1 (10) 1 (12.5)
    Present 9 (90) 7 (87.5)
Moth-eaten in NADH-TR 0.153
    None 3 (30) 6 (75.0)
    Present 7 (70) 2 (25.0)
Myosin staining pattern 0.427
    None 0 1 (12.5)
    Several 2 (20) 3 (37.5)
    Small part 8 (80) 4 (50.0)
Dystrophin-1 staining pattern 0.151
    Dizzy lineation 3 (30) 5 (62.5)
    Light-colored lineation 4 (40) 0
    Discontinuous lineation 3 (30) 3 (37.5)
Dystrophin-2 staining pattern 0.047
    Dizzy lineation 3 (30) 7 (87.5)
    Light-colored lineation 3 (30) 0
    Discontinuous lineation 4 (40) 1 (12.5)
Dystrophin-3 staining pattern 0.798
    Dizzy lineation 0 1 (12.5)
    Light-colored lineation 5 (50) 3 (37.5)
    Discontinuous lineation 5 (50) 4 (50.0)
Dystrophin-total staining pattern 0.069
    Dizzy lineation 3 (30) 7 (87.5)
    Light-colored lineation 4 (40) 0
    Discontinuous lineation 3 (30) 1 (12.5)

图2

AIS患者椎旁肌肉活检Dystrophin-2和Dystrophin-total的免疫组织化学染色"

图3

AIS患者椎旁肌活检中Dystrophin-1(杆状结构域表位)和Dystrophin-3(N末端表位)免疫组织化学染色"

表3

不同Nash-Moe分型AIS患者肌肉活检病理学特点(n=18)"

Pathological features or staining pattern Nash-Moe type Ⅰ (n=8) Nash-Moe type Ⅱ (n=7) Nash-Moe type Ⅲ (n=3) P
Atrophy degree 0.314
    Mild-moderate 1 (12.5) 0 0
    Moderate-severe 7 (87.5) 7 (100.00) 2 (66.67)
    Severe 0 0 1(33.33)
Atrophy pattern >0.999
    Big group 2 (25.0) 2 (28.57) 0
    Small group 6 (75.0) 5 (71.43) 3 (100.00)
Degeneration of myofibers >0.999
    None 6 (75.0) 5 (71.43) 2 (66.67)
    Present 2 (25.0) 2 (28.57) 1 (33.33)
Edema 0.580
    None 2 (25.0) 4 (57.14) 2 (66.67)
    Few 4 (50.0) 2 (28.57) 0
    Most 2 (25.0) 1 (14.29) 1 (33.33)
Whorled fibers 0.451
    None 4 (50.0) 5 (71.43) 3 (100.00)
    Present 4 (50.0) 2 (28.57) 0
Hypertrophic fibers >0.999
    None 1 (12.5) 1 (14.29) 0
    Present 7 (87.5) 6 (85.71) 3 (100.00)
Internal nuclei 0.451
    None 1 (12.5) 0 1 (33.33)
    Present 7 (87.5) 7 (100.00) 2 (66.67)
Moth-eaten in NADH-TR 0.698
    None 5 (62.5) 3 (42.86) 1 (33.33)
    Present 3 (37.5) 4 (57.14) 2 (66.67)
Myosin staining pattern 0.762
    None 1 (12.5) 0 0
    Several 1 (12.5) 3 (42.86) 1 (33.33)
    Small part 6 (75.0) 4 (57.14) 2 (66.67)
Dystrophin-1 staining pattern 0.075
    Dizzy lineation 5 (62.5) 1 (14.29) 2 (66.67)
    Light-colored lineation 0 4 (57.14) 0
    Discontinuous lineation 3 (37.5) 2 (28.57) 1 (33.33)
Dystrophin-2 staining pattern 0.043
    Dizzy lineation 7 (87.5) 3 (42.86) 0
    Light-colored lineation 0 2 (28.57) 1 (33.33)
    Discontinuous lineation 1 (12.5) 2 (28.57) 2 (66.67)
Dystrophin-3 staining pattern >0.999
    Dizzy lineation 1 (12.5) 0 0
    Light-colored lineation 3 (37.5) 4 (57.14) 1 (33.33)
    Discontinuous lineation 4 (50.0) 3 (42.86) 2 (66.67)
Dystrophin-total staining pattern 0.441
    Dizzy lineation 5 (62.5) 2 (28.57) 3 (100.00)
    Light-colored lineation 1 (12.5) 3 (42.86) 0
    Discontinuous lineation 2 (25.0) 2 (28.57) 0

图4

AIS患者椎旁肌活检中炎症浸润情况"

图5

CD68+细胞浸润于肌腱及肌束间质小血管周围(CD68 ×40)"

1 Cheng JC , Castelein RM , Chu WC , et al. Adolescent idiopathic scoliosis[J]. Nat Rev Dis Primers, 2015, 1, 15030.
doi: 10.1038/nrdp.2015.30
2 Weinstein SL . The natural history of adolescent idiopathic scoliosis[J]. J Pediatr Orthop, 2019, 39 (6): S44- S46.
3 Spencer GS , Eccles MJ . Spinal muscle in scoliosis: Part 2. The proportion and size of type 1 and type 2 skeletal muscle fibres measured using a computer-controlled microscope[J]. J Neurol Sci, 1976, 30 (1): 143- 154.
doi: 10.1016/0022-510X(76)90262-8
4 Fidler MW , Jowett RL . Muscle imbalance in the aetiology of sco-liosis[J]. J Bone Joint Surg B, 1976, 58 (2): 200- 201.
5 Khosla S , Tredwell SJ , Day B , et al. An ultrastructural study of multifidus muscle in progressive idiopathic scoliosis. Changes resulting from a sarcolemmal defect at the myotendinous junction[J]. J Neurol Sci, 1980, 46 (1): 13- 31.
doi: 10.1016/0022-510X(80)90040-4
6 Tidball JG . Myotendinous junction: Morphological changes and mechanical failure associated with muscle cell atrophy[J]. Exp Mol Pathol, 1984, 40 (1): 1- 12.
doi: 10.1016/0014-4800(84)90060-1
7 Wajchenberg M , Martins DE , Luciano RP , et al. Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: A cross-sectional study[J]. Medicine (Baltimore), 2015, 94 (8): e598.
doi: 10.1097/MD.0000000000000598
8 Luciano Rde P , Puertas EB , Martins DE , et al. Adolescent idiopathic scoliosis without limb weakness: A differential diagnosis of core myopathy?[J]. BMC Musculoskelet Disord, 2015, 16, 179.
doi: 10.1186/s12891-015-0629-8
9 Zoabli G , Mathieu PA , Aubin CE . Magnetic resonance imaging of the erector spinae muscles in Duchenne muscular dystrophy: Implication for scoliotic deformities[J]. Scoliosis, 2008, 3, 21.
doi: 10.1186/1748-7161-3-21
10 Nash CL Jr , Moe JH . A study of vertebral rotation[J]. J Bone Joint Surg Am, 1969, 51 (2): 223- 229.
doi: 10.2106/00004623-196951020-00002
11 Dubowitz V , Sewry CA , Oldfors A , et al. Muscle biopsy: A practical approach[M]. 4th ed. Oxford, England: Saunders Else-vier, 2013.
12 Altaf F , Gibson A , Dannawi Z , et al. Adolescent idiopathic sco-liosis[J]. BMJ, 2013, 346, f2508.
doi: 10.1136/bmj.f2508
13 Brzoska E , Kalkowski L , Kowalski K , et al. Muscular contribution to adolescent idiopathic scoliosis from the perspective of stem cell-based regenerative medicine[J]. Stem Cells Dev, 2019, 28 (16): 1059- 1077.
doi: 10.1089/scd.2019.0073
14 Veldhuizen AG , Wever DJ , Webb PJ . The aetiology of idiopathic scoliosis: Biomechanical and neuromuscular factors[J]. Eur Spine J, 2000, 9 (3): 178- 184.
doi: 10.1007/s005860000142
15 Meier MP , Klein MP , Krebs D , et al. Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1997, 22 (20): 2357- 2364.
doi: 10.1097/00007632-199710150-00008
16 Bylund P , Jansson E , Dahlberg E , et al. Muscle fiber types in thoracic erector spinae muscles[J]. Clin Orthop Relat Res, 1987, (214): 222- 228.
17 Mannion AF , Meier M , Grob D , et al. Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence[J]. Eur Spine J, 1998, 7 (4): 289- 293.
doi: 10.1007/s005860050077
18 Hoffman EP , Brown RH Jr , Kunkel LM . Dystrophin: The protein product of the Duchenne muscular dystrophy locus[J]. Cell, 1987, 51 (6): 919- 928.
doi: 10.1016/0092-8674(87)90579-4
19 Ervasti JM , Campbell KP . Membrane organization of the dystrophin-glycoprotein complex[J]. Cell, 1991, 66 (6): 1121- 1231.
doi: 10.1016/0092-8674(91)90035-W
20 Houang EM , Sham YY , Bates FS , et al. Muscle membrane integrity in Duchenne muscular dystrophy: Recent advances in copolymer-based muscle membrane stabilizers[J]. Skelet Muscle, 2018, 8 (1): 31.
doi: 10.1186/s13395-018-0177-7
21 Yiu EM , Kornberg AJ . Duchenne muscular dystrophy[J]. J Paediatr Child Health, 2015, 51 (8): 759- 764.
doi: 10.1111/jpc.12868
22 Wilson K , Faelan C , Patterson-Kane JC , et al. Duchenne and Becker muscular dystrophies: A review of animal models, clinical end points, and biomarker quantification[J]. Toxicol Pathol, 2017, 45 (7): 961- 976.
doi: 10.1177/0192623317734823
23 Goebel HH , Sewry CA , Weller RO . Muscle disease: Pathology and genetics[M]. 2nd ed. New Jersey, USA: Wiley-Blackwell, 2013: 95- 100.
24 Gherardi RK . Pathogenic aspects of dermatomyositis, polymyositis and overlap myositis[J]. Presse Med, 2011, 40 (4 Pt 2): e209- e218.
25 Samaan MC , Missiuna P , Peterson D , et al. Understanding the role of the immune system in adolescent idiopathic scoliosis: Immunometabolic CONnections to Scoliosis (ICONS) study protocol[J]. BMJ Open, 2016, 6 (7): e011812.
doi: 10.1136/bmjopen-2016-011812
26 Rudrapatna S , Peterson D , Missiuna P , et al. Understanding muscle-immune interactions in adolescent idiopathic scoliosis: A feasibility study[J]. Pilot Feasibility Stud, 2017, 3, 50.
doi: 10.1186/s40814-017-0193-0
27 Van Gennip JLM , Boswell CW , Ciruna B . Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis[J]. Sci Adv, 2018, 4 (12): eaav1781.
doi: 10.1126/sciadv.aav1781
28 Dalkilic I , Kunkel LM . Muscular dystrophies: Genes to pathoge-nesis[J]. Curr Opin Genet Dev, 2003, 13 (3): 231- 238.
doi: 10.1016/S0959-437X(03)00048-0
29 Fiorillo AA , Heier CR , Novak JS , et al. TNF-α-induced micro-RNAs control dystrophin expression in Becker muscular dystrophy[J]. Cell Rep, 2015, 12 (10): 1678- 1690.
doi: 10.1016/j.celrep.2015.07.066
[1] 刘云飞,党佳佳,钟盼亮,马宁,师嫡,宋逸. 1990—2019年中国5~24岁人群伤害死亡率分析[J]. 北京大学学报(医学版), 2022, 54(3): 498-504.
[2] 陈曼曼,杨招庚,苏彬彬,李艳辉,高迪,马莹,马涛,董彦会,马军. 中山市儿童青少年青春期身高生长突增规律[J]. 北京大学学报(医学版), 2021, 53(3): 506-510.
[3] 杨雪,孙伟,王哲,姬爱平,白洁. 儿童和青少年牙外伤急诊患者临床分析[J]. 北京大学学报(医学版), 2021, 53(2): 384-389.
[4] 周境,刘怡. 不同垂直骨面型骨性Ⅱ类青少年女性颞下颌关节锥形束CT测量分析[J]. 北京大学学报(医学版), 2021, 53(1): 109-119.
[5] 郝一昌,颜野,张帆,邱敏,周朗,刘可,卢剑,肖春雷,黄毅,刘承,马潞林. 穿刺活检单针阳性的前列腺癌手术策略选择及经验总结[J]. 北京大学学报(医学版), 2020, 52(4): 625-631.
[6] 罗冬梅,闫晓晋,胡佩瑾,张京舒,宋逸,马军. 1990—2010年中国女性早婚和生育的地区不平等性[J]. 北京大学学报(医学版), 2020, 52(3): 479-485.
[7] 陶春燕,李红霞,李雪迎,唐朝枢,金红芳,杜军保. 体位性心动过速综合征儿童及青少年在直立试验中血流动力学变化[J]. 北京大学学报(医学版), 2019, 51(3): 414-421.
[8] 董彦会,宋逸,董彬,邹志勇,王政和,杨招庚,王西婕,李艳辉,马军. 2014年中国7~18岁学生血压状况与营养状况的关联分析——基于中国儿童青少年血压评价标准[J]. 北京大学学报(医学版), 2018, 50(3): 422-428.
[9] 陈天麒,董彬,张文静,高迪思,董彦会,马军,马迎华. 儿童青少年睡眠时间与速度和耐力成绩的相关性研究[J]. 北京大学学报(医学版), 2018, 50(3): 429-435.
[10] 李昕,王欣,吴迪,陈智滨,王梦醒,高艳霞,巩纯秀,秦满. 青少年糖尿病患者血浆及龈沟液中白细胞介素-1β和C反应蛋白水平[J]. 北京大学学报(医学版), 2018, 50(3): 538-542.
[11] 王楠,赵玉鸣. 62例残障儿童及青少年在全身麻醉下牙齿治疗的回顾性研究[J]. 北京大学学报(医学版), 2018, 50(2): 293-299.
[12] 张玉祥,蒙学兵,姚林,张崔建,宋刚,蔡林,张争,李学松,龚侃,李淑清,山刚志,何群,杨新宇,何志嵩,周利群. 单中心14年B超引导下经皮肾肿物穿刺活检经验[J]. 北京大学学报(医学版), 2017, 49(4): 617-621.
[13] 马闰卓,邱敏,何为,杨斌,夏海缀,邹达,陆敏,马潞林,卢剑. 输尿管镜活检可协助上尿路尿路上皮癌危险分层[J]. 北京大学学报(医学版), 2017, 49(4): 632-637.
[14] 董彦会,王政和,杨招庚,王西婕,陈妍君,邹志勇,马军. 2005年至2014年中国7~18岁儿童青少年营养不良流行现状及趋势变化分析[J]. 北京大学学报(医学版), 2017, 49(3): 424-432.
[15] 宋逸,胡佩瑾,董彦会,张冰,马军. 2014年全国各省、自治区、直辖市汉族学生视力不良现况分析[J]. 北京大学学报(医学版), 2017, 49(3): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[2] 范少光. 向王志均院士学习[J]. 北京大学学报(医学版), 2000, 32(4): 300 .
[3] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[4] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .
[5] 王倩, 张翼, 陆敏, 管又飞, 朱毅, 王悦. 高盐诱导的高血压大鼠模型肾组织可溶性表氧化物酶高表达及其作用初步探讨[J]. 北京大学学报(医学版), 2010, 42(2): 126 -130 .
[6] 丁昊炜, 任汉云, 郭乃榄, 黄晓军, 许兰平, 张耀臣, 陆道培. 造血干细胞移植患者巨细胞病毒感染危险因素和疗效分析[J]. 北京大学学报(医学版), 2003, 35(6): 596 -599 .
[7] 赵宝红, 白薇, 冯海兰, 李盛琳. 有血清和无血清培养基联合法培养原代人牙龈上皮细胞[J]. 北京大学学报(医学版), 2004, 36(1): 102 -105 .
[8] 耿彬, 常林, 杜军保, 唐朝枢. 防治高同型半胱氨酸血症的新策略[J]. 北京大学学报(医学版), 2005, 37(2): 215 -219 .
[9] 陈亚红, 姚婉贞, 赵鸣武, 庞永政, 唐朝枢. 哮喘气道重塑中钙调神经磷酸酶与蛋白激酶活性的相互调节[J]. 北京大学学报(医学版), 2005, 37(6): 599 -602 .
[10] 陈世伟, 张立实, 张红敏, 冯晓凡, 彭晓莉. 大豆异黄酮对胰岛素抵抗大鼠胰岛素敏感性及瘦素基因表达的影响[J]. 北京大学学报(医学版), 2006, 38(2): 197 -200 .