论著

表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响

  • 丁茜 ,
  • 李文锦 ,
  • 孙丰博 ,
  • 谷景华 ,
  • 林元华 ,
  • 张磊
展开
  • 1. 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081
    2. 清华大学材料学院, 北京 100084
    3. 北京航空航天大学材料科学与工程学院, 北京 100191

收稿日期: 2020-10-12

  网络出版日期: 2023-08-03

基金资助

国家自然科学基金(81671026);北京市自然科学基金(7192233);首都卫生发展科研专项(首发2020-2-4104);北京大学口腔医学院青年科研基金(PKUSS20190110)

Effects of surface treatment on the phase and fracture strength of yttria- and magnesia-stabilized zirconia implants

  • Qian DING ,
  • Wen-jin LI ,
  • Feng-bo SUN ,
  • Jing-hua GU ,
  • Yuan-hua LIN ,
  • Lei ZHANG
Expand
  • 1. Department of Proshodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    3. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2020-10-12

  Online published: 2023-08-03

Supported by

the National Natural Science Foundation of China(81671026);the Beijing Natural Science Foundation(7192233);the Capital Health Development Research Special Fund(首发2020-2-4104);the PKU School of Stomatology for Talented Young Investigators(PKUSS20190110)

摘要

目的: 探索喷砂、喷砂加酸蚀对氧化钇和氧化镁稳定的氧化锆种植体表面晶相和断裂强度的影响。方法: 通过计算机辅助设计(computer aided design, CAD)/计算机辅助制造(computer aided manufacture, CAM)技术, 以氧化钇稳定的多晶四方相氧化锆(yttria-stabilized tetragonal zirconia polycrystal, Y-TZP)和氧化镁稳定的氧化锆(magnesia partially stabilized zirconia, Mg-PSZ)两种材料加工标准试件及种植体, 分为不处理组(对照组)、喷砂组和喷砂加酸蚀组3组, 观察表面显微形貌并计算表面粗糙度。采用X射线衍射仪进行物相分析, 通过静力试验获得各组种植体的断裂强度。结果: 喷砂、喷砂加酸蚀处理显著增加了Y-TZP和Mg-PSZ两种种植体的表面粗糙度[轮廓算术平均偏差(Ra)值](P < 0.01)。物相分析结果显示, 表面喷砂和喷砂加酸蚀处理未对Mg-PSZ试件表面的晶相组成造成显著影响, 但导致了Y-TZP试件的单斜相百分数明显升高。喷砂、喷砂加酸蚀处理的Mg-PSZ种植体断裂强度分别为(294.1±3.3) N和(331.3±26.4) N, 与对照组[(458.4±48.7) N]相比均显著下降(P < 0.01)。Y-TZP种植体对照组的断裂强度为(827.3±101.6) N, 喷砂处理后断裂强度为(1 162.9±116.5) N, 与对照组相比显著升高(P=0.03), 喷砂加酸蚀处理后为(867.2±171.0) N, 与对照组相比差异无统计学意义(P>0.99)。结论: 表面喷砂能够提高Y-TZP种植体的断裂强度, 而表面喷砂和喷砂加酸蚀处理均会降低本研究中制备的Mg-PSZ种植体的断裂强度。

本文引用格式

丁茜 , 李文锦 , 孙丰博 , 谷景华 , 林元华 , 张磊 . 表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响[J]. 北京大学学报(医学版), 2023 , 55(4) : 721 -728 . DOI: 10.19723/j.issn.1671-167X.2023.04.025

Abstract

Objective: To evaluate the effects of surface treatment on the phase and fracture strength of yttria-and magnesia-stabilized and its mechanisms. Methods: One-piece cylindrical screw-type implants were fabricated with yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and magnesia partially stabilized zirconia (Mg-PSZ) using computer aided design (CAD)/computer aided manufacture (CAM) technique.They were divided into three groups: (1) placed in water for 1 h after final sintering (control group), (2) sandblasting using 110 μm Al2O3 particles, (3) sandblasting plus etching with hydrofluoric acid for 1 h.The surface morphology and roughness of the implants were evaluated.Tetragonal to monoclinic transformation was measured on the surface by X-ray diffraction.Static tests of the zirconia implants were carried out at room temperature following the International Standards Organization (ISO)14801:2014 Standard. Results: Both sandblasting alone and sandblasting plus acid etching significantly increased surface roughness (Ra) of Mg-PSZ and Y-TZP implants (P < 0.01), with sandblasting plus acid etching exhibited the highest surface roughness.No monoclinic band was detected in Mg-PSZ surface.Compared with the control group, the surface monoclinic content of Mg-PSZ had no obvious change after surface treatments.However, strong monoclinic bands appeared in surface modified Y-TZP.Monoclinic content of Y-TZP was higher than that of control group (1.55%) after both sandblasting alone (16.44%) and sandblasting plus acid etching (7.68%).For Mg-PSZ implants, fracture strengths of sandblasting group and sandblasting plus acid etching group were (294.1±3.3) N and (331.3±26.4) N respectively, which were lower than that of control group (458.4±48.7) N with significant differences (P < 0.01).For Y-TZP implants, fracture strength of control group was (827.3±101.6) N.Compared with control group, sandblasting group showed significantly higher fracture strength (P=0.03), which was (1 162.9±116.5) N.While sandblasting plus acid etching group had a fracture strength of (867.2±171.0) N, with no significant difference with control group (P>0.99). Conclusion: Sandblasting improved the fracture strength of Y-TZP implants.For the Mg-PSZ implants manufactured in this study, surface treatments with sandblasting and sandblasting plus acid etching resulted in a decrease of fracture strength.

参考文献

1 Elnayef B , Lazaro A , Suarez-Lopez DAF , et al. Zirconia implants as an alternative to titanium: A systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2017, 32 (3): e125- e134.
2 Roehling S , Astasov-Frauenhoffer M , Hauser-Gerspach I , et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017, 88 (3): 298- 307.
3 Kubasiewicz-Ross P , Hadzik J , Dominiak M . Osseointegration of zirconia implants with 3 varying surface textures and a titanium implant: A histological and micro-CT study[J]. Adv Clin Exp Med, 2018, 27 (9): 1173- 1179.
4 Hanawa T . Zirconia versus titanium in dentistry: A review[J]. Dent Mater J, 2020, 39 (1): 24- 36.
5 Denry I , Kelly JR . State of the art of zirconia for dental applications[J]. Dent Mater, 2008, 24 (3): 299- 307.
6 Toraya H , Yoshimura M , Somiya S . Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. J Am Ceram Soc, 1984, 67 (6): 119- 121.
7 Wennerberg A , Albrektsson T . Effects of titanium surface topography on bone integration: A systematic review[J]. Clin Oral Implants Res, 2009, 20 (Suppl 4): 172- 184.
8 Albrektsson T , Wennerberg A . On osseointegration in relation to implant surfaces[J]. Clin Implant Dent Relat Res, 2019, 21 (Suppl 1): 4- 7.
9 Pieralli S , Kohal RJ , Lopez HE , et al. Osseointegration of zirconia dental implants in animal investigations: A systematic review and meta-analysis[J]. Dent Mater, 2018, 34 (2): 171- 182.
10 Soon G , Pingguan-Murphy B , Akbar SA . Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces[J]. J Mech Behav Biomed Mater, 2017, 68, 26- 31.
11 Casucci A , Osorio E , Osorio R , et al. Influence of different surface treatments on surface zirconia frameworks[J]. J Dent, 2009, 37 (11): 891- 897.
12 Smielak B , Klimek L . Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia[J]. J Prosthet Dent, 2015, 113 (6): 596- 602.
13 Bergemann C , Duske K , Nebe JB , et al. Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts[J]. J Mater Sci Mater Med, 2015, 26 (1): 5350.
14 Flamant Q , Marro FG , Rovira J , et al. Hydrofluoric acid etching of dental zirconia. Part 1: Etching mechanism and surface characterization[J]. J Eur Ceram Soc, 2016, 36 (1): 121- 134.
15 Furuya K , Takemoto S , Yamashita S , et al. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal)[J]. Dent Mater J, 2020, 39 (4): 577- 586.
16 王晓春, 张希艳. 材料现代分析与测试技术[M]. 北京: 国防工业出版社, 2009: 82.
17 Warren BE . X-Ray Diffraction[M]. New York: Dover Publications Inc., 1990: 251- 254.
18 Roy ME , Whiteside LA , Katerberg BJ , et al. Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads[J]. J Biomed Mater Res A, 2007, 83 (4): 1096- 1102.
19 Zucuni CP , Dapieve KS , Rippe MP , et al. Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding[J]. J Mech Behav Biomed Mater, 2019, 93, 222- 229.
20 Amaral M , Cesar PF , Bottino MA , et al. Fatigue behavior of Y-TZP ceramic after surface treatments[J]. J Mech Behav Biomed Mater, 2016, 57, 149- 156.
21 Aurelio IL , Marchionatti AM , Montagner AF , et al. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis[J]. Dent Mater, 2016, 32 (6): 827- 845.
22 Karakoca S , Yilmaz H . Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics[J]. J Biomed Mater Res B Appl Biomater, 2009, 91 (2): 930- 937.
23 Egilmez F , Ergun G , Cekic-Nagas I , et al. Factors affecting the mechanical behavior of Y-TZP[J]. J Mech Behav Biomed Mater, 2014, 37, 78- 87.
24 Sanon C , Chevalier J , Douillard T , et al. A new testing protocol for zirconia dental implants[J]. Dent Mater, 2015, 31 (1): 15- 25.
25 Ding Q , Zhang L , Bao R , et al. Effects of different surface treatments on the cyclic fatigue strength of one-piece CAD/CAM zirconia implants[J]. J Mech Behav Biomed Mater, 2018, 84, 249- 257.
26 Sanon C , Chevalier J , Douillard T , et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface[J]. Dent Mater, 2013, 29 (4): 389- 397.
27 牛月月, 王春燕, 舒静媛, 等. 氧化锆基纳米羟基磷灰石功能梯度材料的制备及力学检测[J]. 中国组织工程研究, 2020, 24 (10): 1528- 1533.
28 Bermúdez-Reyes B , Del Refugio Lara-Banda M , Reyes-Zarate E , et al. Effect on growth and osteoblast mineralization of hydroxyapatite-zirconia (HA-ZrO2) obtained by a new low temperature system[J]. Biomed Mater, 2018, 13 (3): 035001.
文章导航

/