论著

转化生长因子β信号通路与非综合征型唇腭裂发病风险的基因-基因及基因-环境交互作用

  • 侯天姣 ,
  • 周治波 ,
  • 王竹青 ,
  • 王梦莹 ,
  • 王斯悦 ,
  • 彭和香 ,
  • 郭煌达 ,
  • 李奕昕 ,
  • 章涵宇 ,
  • 秦雪英 ,
  • 武轶群 ,
  • 郑鸿尘 ,
  • 李静 ,
  • 吴涛 ,
  • 朱洪平
展开
  • 1. 北京大学公共卫生学院流行病与卫生统计学系,北京 100191
    2. 重大疾病流行病学教育部重点实验室(北京大学),北京 100191
    3. 北京大学口腔医院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081
    4. 北京大学公共卫生学院营养与食品卫生学系,北京 100191
    5. 北京大学口腔医院·口腔医院儿童口腔科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081

收稿日期: 2024-02-18

  网络出版日期: 2024-06-12

基金资助

国家自然科学基金(81573225)

Gene-gene/gene-environment interaction of transforming growth factor-β signaling pathway and the risk of non-syndromic oral clefts

  • Tianjiao HOU ,
  • Zhibo ZHOU ,
  • Zhuqing WANG ,
  • Mengying WANG ,
  • Siyue WANG ,
  • Hexiang PENG ,
  • Huangda GUO ,
  • Yixin LI ,
  • Hanyu ZHANG ,
  • Xueying QIN ,
  • Yiqun WU ,
  • Hongchen ZHENG ,
  • Jing LI ,
  • Tao WU ,
  • Hongping ZHU
Expand
  • 1. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
    3. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    4. Department of Nutrition and Food Hygiene, Peking University School of Public Health, Beijing 100191, China
    5. Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, NMPA Key Laboratory for Dental Materials, Beijing 100081, China

Received date: 2024-02-18

  Online published: 2024-06-12

Supported by

Supported by the National Natural Science Foundation of China(81573225)

摘要

目的: 探索亚裔人群中转化生长因子β(transforming growth factor-β,TGF-β)信号通路基因多态性与非综合征型唇裂合并或不合并腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)的关联及可能存在的基因-基因、基因-环境交互作用。方法: 选取1 038个NSCL/P核心家系作为研究对象。对TGF-β信号通路上的10个基因的343个单核苷酸多态性(single nucleotide polymorphism,SNP)位点进行了传递不平衡检验(transmission disequilibrium test,TDT),采用条件Logistic回归模型进行基因-基因交互作用分析和基因-环境交互作用分析。研究收集的环境因素包括患儿母亲孕期吸烟、被动吸烟、乙醇摄入量以及维生素使用情况。由于患儿母亲孕期吸烟和饮酒暴露率较低(<3%),因此,仅对母亲孕期被动吸烟及补充多种维生素这两个环境因素与基因之间的交互作用进行了分析。采用Bonferroni法对结果进行多重检验校正,显著性的阈值设置为P=1.46×10-4结果: 共有4个基因的23个SNP位点与NSCL/P之间存在关联(P<0.05),但经过Bonferroni多重检验校正后,这些关联均未达到统计学显著性水平。经过Bonferroni多重检验校正之后,6对SNP[rs4939874(SMAD2)与rs1864615(TGFBR2),rs2796813(TGFB2)与rs2132298(TGFBR2),rs4147358(SMAD3)与rs1346907(TGFBR2),rs4939874(SMAD2)与rs1019855(TGFBR2),rs4939874(SMAD2)与rs12490466(TGFBR2),以及rs2009112(TGFB2)与rs4075748(TGFBR2)]存在显著的统计学交互作用(P<1.46×10-4),基因-环境交互作用的分析没有达到多重检验校正阈值的显著结果。结论: 未发现TGF-β通路基因多态性与NSCL/P的关联,该通路上部分基因可能通过基因-基因交互作用影响NSCL/P的发病风险。未来仍需其他独立研究的证据支持,以进一步的探索其中潜在的生物学机制。

本文引用格式

侯天姣 , 周治波 , 王竹青 , 王梦莹 , 王斯悦 , 彭和香 , 郭煌达 , 李奕昕 , 章涵宇 , 秦雪英 , 武轶群 , 郑鸿尘 , 李静 , 吴涛 , 朱洪平 . 转化生长因子β信号通路与非综合征型唇腭裂发病风险的基因-基因及基因-环境交互作用[J]. 北京大学学报(医学版), 2024 , 56(3) : 384 -389 . DOI: 10.19723/j.issn.1671-167X.2024.03.002

Abstract

Objective: To explore the association between polymorphisms of transforming growth factor-β (TGF-β) signaling pathway and non-syndromic cleft lip with or without cleft palate (NSCL/P) among Asian populations, while considering gene-gene interaction and gene-environment interaction. Methods: A total of 1 038 Asian NSCL/P case-parent trios were ascertained from an international consortium, which conducted a genome-wide association study using a case-parent trio design to investigate the genes affec-ting risk to NSCL/P. After stringent quality control measures, 343 single nucleotide polymorphism (SNP) spanning across 10 pivotal genes in the TGF-β signaling pathway were selected from the original genome-wide association study(GWAS) dataset for further analysis. The transmission disequilibrium test (TDT) was used to test for SNP effects. The conditional Logistic regression models were used to test for gene-gene interaction and gene-environment interaction. Environmental factors collected for the study included smoking during pregnancy, passive smoking during pregnancy, alcohol intake during pregnancy, and vitamin use during pregnancy. Due to the low rates of exposure to smoking during pregnancy and alcohol consumption during pregnancy (<3%), only the interaction between maternal smoking during pregnancy and multivitamin supplementation during pregnancy was analyzed. The threshold for statistical significance was rigorously set at P =1.46×10-4, applying Bonferroni correction to account for multiple testing. Results: A total of 23 SNPs in 4 genes yielded nominal association with NSCL/P (P<0.05), but none of these associations was statistically significant after Bonferroni' s multiple test correction. However, there were 6 pairs of SNPs rs4939874 (SMAD2) and rs1864615 (TGFBR2), rs2796813 (TGFB2) and rs2132298 (TGFBR2), rs4147358 (SMAD3) and rs1346907 (TGFBR2), rs4939874 (SMAD2) and rs1019855 (TGFBR2), rs4939874 (SMAD2) and rs12490466 (TGFBR2), rs2009112 (TGFB2) and rs4075748 (TGFBR2) showed statistically significant SNP-SNP interaction (P<1.46×10-4). In contrast, the analysis of gene-environment interactions did not yield any significant results after being corrected by multiple testing. Conclusion: The comprehensive evaluation of SNP associations and interactions within the TGF-β signaling pathway did not yield any direct associations with NSCL/P risk in Asian populations. However, the significant gene-gene interactions identified suggest that the genetic architecture influencing NSCL/P risk may involve interactions between genes within the TGF-β signaling pathway. These findings underscore the necessity for further investigations to unravel these results and further explore the underlying biological mechanisms.

参考文献

1 Awotoye W , Mossey PA , Hetmanski JB , et al. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate[J]. Sci Rep, 2022, 12 (1): 11743.
2 Razaghi-Moghadam Z , Namipashaki A , Farahmand S , et al. Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology[J]. Eur J Hum Genet, 2019, 27 (2): 226- 234.
3 Won HJ , Kim JW , Won HS , et al. Gene regulatory networks and signaling pathways in palatogenesis and cleft palate: A comprehensive review[J]. Cells, 2023, 12 (15): 1954.
4 Li J , Rodriguez G , Han X , et al. Regulatory mechanisms of soft palate development and malformations[J]. J Dent Res, 2019, 98 (9): 959- 967.
5 Smane-Filipova L , Pilmane M , Akota I . Immunohistochemical analysis of nestin, CD34 and TGFβ3 in facial tissue of children with complete unilateral and bilateral cleft lip and palate[J]. Stomatologija, 2016, 18 (3): 98- 104.
6 Guo Z , Huang C , Ding K , et al. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate[J]. DNA Cell Biol, 2010, 29 (7): 375- 380.
7 Zhang W , Shen Z , Xing Y , et al. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate[J]. Exp Cell Res, 2020, 386 (2): 111734.
8 Panetta NJ , Gupta DM , Slater BJ , et al. Tissue engineering in cleft palate and other congenital malformations[J]. Pediatr Res, 2008, 63 (5): 545- 551.
9 Tang M , Wang Y , Han S , et al. Transforming growth factor-beta 3 gene polymorphisms and nonsyndromic cleft lip and palate risk: A meta-analysis[J]. Genet Test Mol Biomarkers, 2013, 17 (12): 881- 889.
10 Shi X , Wang Q , Sun C , et al. Study on the role of methylation in nonsyndromic cleft lip with or without cleft palate using a monozygotic twin model[J]. Int J Pediatr Otorhinolaryngol, 2021, 143, 110659.
11 王竹青, 王苹, 吴雅慧, 等. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47 (3): 384- 389.
12 Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
13 Weinberg CR . Methods for detection of parent-of-origin effects in genetic studies of case-parents triads[J]. Am J Hum Genet, 1999, 65 (1): 229- 235.
14 Mossey PA , Little J , Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009, 374 (9703): 1773- 1785.
15 Lewis CW , Jacob LS , Lehmann CU . The primary care pediatrician and the care of children with cleft lip and/or cleft palate[J]. Pediatrics, 2017, 139 (5): e20170628.
16 Azevedo CMS , Machado RA , Martelli-Júnior H , et al. Exploring GRHL3 polymorphisms and SNP-SNP interactions in the risk of non-syndromic oral clefts in the Brazilian population[J]. Oral Dis, 2020, 26 (1): 145- 151.
17 郝嫣汝, 王岩, 孙晓梅. 非综合征性唇腭裂环境因素的研究进展[J]. 中华整形外科杂志, 2019, 35 (7): 702- 705.
18 Lara LDS , Coletta RD , Assis MR , et al. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: A multicenter study in Brazil[J]. J Appl Oral Sci, 2024, 32, e20230353.
19 Li M , Wang H . Pathway analysis identified a significant association between cell-cell adherens junctions-related genes and non-syndromic cleft lip/palate in 895 Asian case-parent trios[J]. Arch Oral Biol, 2022, 136, 105384.
20 Yapijakis C , Davaria S , Gintoni I , et al. The impact of genetic variability of TGF-beta signaling biomarkers in major craniofacial syndromes[J]. Adv Exp Med Biol, 2023, 1423, 187- 191.
21 Saroya G , Hu J , Hu M , et al. Periderm fate during palatogenesis: TGF-β and periderm dedifferentiation[J]. J Dent Res, 2023, 102 (4): 459- 466.
22 Derynck R , Budi EH . Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12 (570): eaav5183.
23 Chen PY , Qin L , Simons M . TGF-β signaling pathways in human health and disease[J]. Front Mol Biosci, 2023, 10, 1113061.
24 Vander AA , Cao J , Li X . TGF-β receptors: In and beyond TGF-β signaling[J]. Cell Signal, 2018, 52, 112- 120.
25 Hata A , Chen YG . TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8 (9): a022061.
26 Lin E , Kuo PH , Liu YL , et al. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population[J]. Sci Rep, 2017, 7 (1): 13589.
27 Babai A , Irving M . Orofacial clefts: Genetics of cleft lip and palate[J]. Genes (Basel), 2023, 14 (8): 1603.
文章导航

/