收稿日期: 2024-03-16
网络出版日期: 2024-07-23
基金资助
北京市自然科学基金(7244419);中央高水平医院临床科研业务费(北京大学第一医院科研种子基金项目)(2024SF80)
Predictive value of preoperative pelvic floor electrophysiological parameters on early urinary incontinence following radical prostatectomy
Received date: 2024-03-16
Online published: 2024-07-23
Supported by
the Beijing Natural Science Foundation(7244419);the National High Level Hospital Clinical Research Funding (Scientific Research Seed Fund of Peking University First Hospital)(2024SF80)
目的: 探索术前盆底肌电生理参数对前列腺癌术后尿失禁风险的预测价值。方法: 选择2020年1月至2022年10月在北京大学第一医院泌尿外科行根治性前列腺切除术患者的病例资料进行回顾性分析,记录患者的年龄、体重指数(body mass index, BMI)、国际前列腺症状评分(international prostate symptom score, IPSS)、前列腺特异性抗原(prostate-specific antigen, PSA)水平、Gleason评分、手术方式、是否尿道功能重建、是否淋巴结清扫、性神经是否保留、留置导尿时间、D’ Amico风险分级、美国麻醉医师协会(American Society of Anesthesiologists, ASA)评分、查尔森(Charlson)合并症指数、术后随访时间、前列腺体积,以及盆底肌电生理参数(前静息均值、快肌均值和慢肌均值)。通过多因素Logistic回归分析,筛选出影响术后早期尿失禁发生的独立危险因素,并通过计算受试者工作特征曲线(receiver operating characteristic, ROC)下面积,评估盆底肌电参数的预测效能,再利用约登指数(Youden index)并结合临床意义,共同确定术后早期尿失禁发生的最佳临界值。结果: 纳入患者271例,术后自主控尿率为81.9%。患者快肌评分为23.5(18.2, 31.6)分,慢肌评分为12.5(9.6, 17.3)分,179例(66.1%)患者未保留性神经,110例(40.6%)患者进行了尿道功能重建。高龄和盆底快肌评分低被确认为尿失禁发生的独立危险因素。≤60岁患者是≥70岁患者自主控尿率的5.482倍(95%CI: 1.532~19.617,P<0.05);患者的盆底快肌评分与尿失禁恢复的关系密切(OR=1.209,95%CI: 1.132~1.291, P<0.05)。当术前盆底快肌评分的最佳临界值设定为18.5分时,ROC的敏感度和特异度分别为80.6%和61.2%。结论: 术前盆底肌电生理参数对于前列腺癌术后尿失禁风险表现出较好的预测准确性和临床应用性,能够用于前列腺癌术后尿失禁风险的早期识别,其中年龄和盆底快肌评分是重要的预测因子。
于书慧 , 韩佳凝 , 钟丽君 , 陈聪语 , 肖云翔 , 黄燕波 , 杨洋 , 车新艳 . 术前盆底肌电生理参数对前列腺癌根治性切除术后早期尿失禁的预测价值[J]. 北京大学学报(医学版), 2024 , 56(4) : 594 -599 . DOI: 10.19723/j.issn.1671-167X.2024.04.008
Objective: To explore the predictive value of preoperative pelvic floor electromyography (EMG) parameters for the risk of urinary incontinence after prostate cancer surgery. Methods: This study retrospectively analyzed the medical records of 271 patients who underwent radical prostatectomy in the urology department of Peking University First Hospital from January 2020 to October 2022. The data included patient age, body mass index (BMI), international prostate symptom score (IPSS), prostate-specific antigen (PSA) levels, Gleason score, type of surgery, urethral reconstruction, lymph node dissection, nerve preservation, catheterization duration, D ' Amico risk classification, American Society of Anesthesiologists (ASA) score, Charlson comorbidity index, postoperative duration, prostate volume, and pelvic floor EMG parameters (pre-resting mean, fast muscle mean, and slow muscle mean scores). Independent risk factors affecting early postoperative urinary incontinence were identified through multivariate Logistic regression analysis. The predictive efficacy of pelvic floor EMG results was evaluated by calculating the area under the receiver operating characteristic (ROC) curve, and the optimal threshold for early postoperative urinary incontinence was determined based on the Youden index and clinical significance. Results: The study included 271 prostate cancer patients, with an 81.9% rate of voluntary urinary control post-surgery. The median score for fast pelvic floor muscles was 23.5(18.2, 31.6), and for slow muscles, it was 12.5(9.6, 17.3). Among the patients, 179 (66.1%) did not preserve nerves, and 110 (40.6%) underwent urethral reconstruction. Advanced age and low fast muscle scores were identified as independent risk factors for urinary incontinence. Patients aged ≤60 had 5.482 times the voluntary urinary control rate compared with those aged ≥70 (95%CI: 1.532-19.617, P < 0.05). There was a significant correlation between fast muscle scores and urinary incontinence recovery (OR=1.209, 95%CI: 1.132-1.291, P < 0.05). When the optimal threshold for preoperative fast muscle score was set at 18.5, the ROC sensitivity and specificity were 80.6% and 61.2%, respectively. Conclusion: Preoperative pelvic floor EMG parameters show good predictive accuracy and clinical applicability for the risk of urinary incontinence after prostate cancer surgery. These parameters can be used for early identification of urinary incontinence risk, with age and fast muscle scores being important predictors.
| 1 | 赫捷, 陈万青, 李霓, 等. 中国前列腺癌筛查与早诊早治指南(2022, 北京)[J]. 中国肿瘤, 2022, 31 (1): 1- 30. |
| 2 | Zhu Y , Mo M , Wei Y , et al. Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18 (5): 282- 301. |
| 3 | Mottet N , Bellmunt J , Bolla M , et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2017, 71 (4): 618- 629. |
| 4 | Ficarra V , Novara G , Rosen RC , et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy[J]. Eur Urol, 2012, 62 (3): 405- 417. |
| 5 | Abdollah F , Sun M , Suardi N , et al. Prediction of functional outcomes after nerve-sparing radical prostatectomy: Results of conditional survival analyses[J]. Eur Urol, 2012, 62 (1): 42- 52. |
| 6 | Eastham JA , Kattan MW , Rogers E , et al. Risk factors for urinary incontinence after radical prostatectomy[J]. J Urol, 1996, 156 (5): 1707- 1713. |
| 7 | Sandhu J S , Breyer B , Comiter C , et al. Incontinence after prostate treatment: AUA/SUFU guideline[J]. J Urol, 2019, 202 (2): 369- 378. |
| 8 | Levy A , Fleishman A , Jackson M , et al. Using preoperative pelvic floor assessment to predict early return of continence after robotic radical prostatectomy[J]. Urology, 2021, 155, 160- 164. |
| 9 | Kubo Y , Tanaka K , Yamasaki M , et al. Influences of the charlson comorbidity index and nutrition status on prognosis after esophageal cancer surgery[J]. Ann Surg Oncol, 2021, 28 (12): 7173- 7182. |
| 10 | Jeong S J , Yeon J S , Lee J K , et al. Development and validation of nomograms to predict the recovery of urinary continence after radical prostatectomy: Comparisons between immediate, early, and late continence[J]. World J Urol, 2014, 32 (2): 437- 444. |
| 11 | Collette ERP , Klaver SO , Lissenberg-Witte BI , et al. Patient reported outcome measures concerning urinary incontinence after robot assisted radical prostatectomy: Development and validation of an online prediction model using clinical parameters, lower urinary tract symptoms and surgical experience[J]. J Robot Surg, 2021, 15 (4): 593- 602. |
| 12 | Ali M , Hutchison DD , Ortiz NM , et al. A narrative review of pelvic floor muscle training in the management of incontinence following prostate treatment[J]. Transl Androl Urol, 2022, 11 (8): 1200- 1209. |
| 13 | Hoyland K , Vasdev N , Abrof A , et al. Post-radical prostatectomy incontinence: Etiology and prevention[J]. Rev Urol, 2014, 16 (4): 181- 188. |
| 14 | Mungovan SF , Carlsson SV , Gass GC , et al. Preoperative exercise interventions to optimize continence outcomes following radical prostatectomy[J]. Nat Rev Urol, 2021, 18 (5): 259- 281. |
| 15 | Laycock J , Jerwood D . Pelvic floor muscle assessment: The PERFECT scheme[J]. Physiotherapy, 2001, 87 (12): 631- 642. |
| 16 | Manassero F , Traversi C , Ales V , et al. Contribution of early intensive prolonged pelvic floor exercises on urinary continence recovery after bladder neck-sparing radical prostatectomy: Results of a prospective controlled randomized trial[J]. Neurourol Urodyn, 2007, 26 (7): 985- 989. |
| 17 | Stanford JL , Feng Z , Hamilton AS , et al. Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: The prostate cancer outcomes study[J]. JAMA, 2000, 283 (3): 354- 360. |
| 18 | Strasser H , Tiefenthaler M , Steinlechner M , et al. Urinary incontinence in the elderly and age-dependent apoptosis of rhabdosphincter cells[J]. Lancet, 1999, 354 (9182): 918- 919. |
| 19 | Heesakkers J , Farag F , Bauer RM , et al. Pathophysiology and contributing factors in postprostatectomy incontinence: A review[J]. Eur Urol, 2017, 71 (6): 936- 944. |
/
| 〈 |
|
〉 |