论著

甘油三酯葡萄糖指数与男性肾结石风险的关联

  • 郑生旗 ,
  • 花天池 ,
  • 殷桂草 ,
  • 张伟 ,
  • 姚曳 ,
  • 李一帆
展开
  • 1. 扬州大学附属医院泌尿外科, 江苏扬州 225001
    2. 苏北人民医院疝儿外科, 江苏扬州 225001

收稿日期: 2024-03-15

  网络出版日期: 2024-07-23

基金资助

国家自然科学基金(82002675);江苏省高等学校自然科学研究面上项目(20KJB320014);江苏省科技计划-青年基金项目(BK2020938)

Association between the triglyceride-glucose index and the incidence of nephrolithiasis in male individuals

  • Shengqi ZHENG ,
  • Tianchi HUA ,
  • Guicao YIN ,
  • Wei ZHANG ,
  • Ye YAO ,
  • Yifan LI
Expand
  • 1. Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, Jiangsu, China
    2. Department of Hernia and Pediatric Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu, China

Received date: 2024-03-15

  Online published: 2024-07-23

Supported by

the National Natural Science Foundation of China(82002675);Jiangsu Natural Science Research of Colleges and Universities-General Project(20KJB320014);Jiangsu Science and Technology Program-Youth Fund Project(BK2020938)

摘要

目的: 评估甘油三酯葡萄糖(triglyceride-glucose,TyG)指数与肾结石风险间的关联性,并探讨在不同人群中的效应差异。方法: 通过横断面研究分析84 968名成年体检者的受检记录,将体检者根据TyG指数分为三个分位组(低、中、高)。采用多因素Logistic回归模型评估TyG指数与肾结石风险之间的关联,使用分段线性回归模型探讨TyG指数与肾结石风险之间的非线性剂量-反应关系,并进行亚组分析以探究不同人群中的效应差异。结果: 随着TyG指数的增加,肾结石的患病率呈上升趋势,从低TyG指数组的4.36%增加到高TyG指数组的8.96%(P < 0.001)。在调整了多种因素后,中、高TyG指数组的男性与低TyG指数组男性相比,肾结石的风险分别增加了1.18倍(95%CI: 1.07~1.31,P=0.002)和1.29倍(95%CI: 2.08~2.47,P < 0.001)。然而,在女性中,这一关联在调整后并不显著(OR=0.98,95%CI: 0.82~1.16,P=0.778)。非线性分析显示,在男性中,TyG指数在8.98的折点以下存在显著关联(OR=1.40,95%CI: 1.24~1.58,P < 0.001),而在该折点及以上则不显著(OR=0.91,95%CI: 0.78~1.06,P=0.24)。亚组分析表明,TyG指数与肾结石风险之间的关系在不同年龄、不同BMI和高血压状态下均较为稳定。结论: TyG指数与男性肾结石风险呈正相关,且这种关系表现为非线性剂量-反应关系; TyG指数有助于识别高风险的肾结石男性患者,但需进一步探讨其潜在机制及在不同人群的普遍性。

本文引用格式

郑生旗 , 花天池 , 殷桂草 , 张伟 , 姚曳 , 李一帆 . 甘油三酯葡萄糖指数与男性肾结石风险的关联[J]. 北京大学学报(医学版), 2024 , 56(4) : 610 -616 . DOI: 10.19723/j.issn.1671-167X.2024.04.011

Abstract

Objective: To analyze the association between the triglyceride-glucose (TyG) index and the risk of nephrolithiasis across various demographic and clinical subgroups, aiming to enhance early diagnosis and treatment of nephrolithiasis and promote personalized care in diverse populations. Methods: This cross-sectional study analyzed the medical records of 84 968 adults, stratified into three categories (low, middle, high) according to their TyG index scores. To evaluate the association between the TyG index and nephrolithiasis risk, multivariable Logistic regression models were employed, adjusting for potential confounders. Additionally, piecewise linear regression models were used to investigate the non-linear dynamics of the TyG index's relationship with nephrolithiasis risk. Subgroup analyses were performed to explore variations in the effects of the TyG index across different demographic and clinical populations. Results: Increasing TyG index was associated with a higher risk of nephrolithiasis, rising from 4.36% in the low group to 8.96% in the high group (P < 0.001). In adjusted models, males in the middle and high TyG index categories demonstrated significantly elevated risks of nephrolithiasis, with odds ratios of 1.18 (95%CI: 1.07-1.31, P=0.002) and 1.29 (95%CI: 1.15-1.45, P < 0.001), respectively. Conversely, in females, the association was not statistically significant post-adjustment (OR=0.98, 95%CI: 0.82-1.16, P=0.778). Among males, for each unit increment in the TyG index below the critical threshold of 8.98, there was a notable 40% escalation in the risk of developing nephrolithiasis (OR=1.40, 95%CI: 1.24-1.58, P < 0.001). Surpassing this threshold, the TyG index no longer conferred a significant increase in risk (OR=0.91, 95%CI: 0.78-1.06, P=0.24). Subgroup analyses indicated that this association remained stable regardless of age, BMI, or hypertension status. Conclusion: The TyG index is positively associated with the risk of nephrolithiasis in males, demonstrating a nonlinear dose-response relationship that becomes especially pronounced at certain index levels. This biomarker could potentially serve as a valuable clinical tool for identifying males who are at a high risk of developing nephrolithiasis, thereby enabling targeted preventive strategies. Further research is urgently needed to explore the underlying mechanisms and to verify the applicability of these results across different populations.

参考文献

1 Hill AJ , Basourakos SP , Lewicki P , et al. Incidence of kidney stones in the united states: The continuous national health and nutrition examination survey[J]. J Urol, 2022, 207 (4): 851- 856.
2 Haas CR , Li G , Hyams ES , et al. Delayed decompression of obstructing stones with urinary tract infection is associated with increased odds of death[J]. J Urol, 2020, 204 (6): 1256- 1262.
3 Khan SR , Pearle MS , Robertson WG , et al. Kidney stones[J]. Nat Rev Dis Primers, 2016, 2, 16008.
4 Peerapen P , Thongboonkerd V . Kidney stone prevention[J]. Adv Nutr, 2023, 14 (3): 555- 569.
5 Fritz J , Bj?rge T , Nagel G , et al. The triglyceride-glucose index as a measure of insulin resistance and risk of obesity-related cancers[J]. Int J Epidemiol, 2020, 49 (1): 193- 204.
6 Lee SH , Park SY , Choi CS . Insulin resistance: From mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46 (1): 15- 37.
7 Kim S , Chang Y , Jung HS , et al. Glycemic status, insulin resistance, and the risk of nephrolithiasis: A cohort study[J]. Am J Kidney Dis, 2020, 76 (5): 658- 668. e1.
8 Huo RR , Liao Q , Zhai L , et al. Interacting and joint effects of triglyceride-glucose index (TyG) and body mass index on stroke risk and the mediating role of TyG in middle-aged and older Chinese adults: A nationwide prospective cohort study[J]. Cardiovasc Diabetol, 2024, 23 (1): 30.
9 Xu L , Wu M , Chen S , et al. Triglyceride-glucose index associates with incident heart failure: A cohort study[J]. Diabetes Metab, 2022, 48 (6): 101365.
10 Tao LC , Xu JN , Wang TT , et al. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations[J]. Cardiovasc Diabetol, 2022, 21 (1): 68.
11 Xiang Q , Xu H , Zhan J , et al. Association between the trigly-ceride-glucose index and vitamin d status in type 2 diabetes mellitus[J]. Nutrients, 2023, 15 (3): 639.
12 Wang S , Shi J , Peng Y , et al. Stronger association of triglyceride glucose index than the HOMA-IR with arterial stiffness in patients with type 2 diabetes: A real-world single-centre study[J]. Cardiovasc Diabetol, 2021, 20 (1): 82.
13 Zhang Q , Xiao S , Jiao X , et al. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: Evidence from NHANES 2001-2018[J]. Cardiovasc Diabetol, 2023, 22 (1): 279.
14 艾比班木·艾则孜, 马依彤. 甘油三酯葡萄糖指数与心血管疾病及代谢综合征相关性的研究进展[J]. 中华老年多器官疾病杂志, 2022, 21 (4): 317- 320.
15 Jiang H , Li L , Liu J , et al. Triglyceride-glucose index as a novel biomarker in the occurrence of kidney stones: A cross-sectional population-based study[J]. Int J Gen Med, 2021, 14, 6233- 6244.
16 Qin Z , Zhao J , Geng J , et al. Higher triglyceride-glucose index is associated with increased likelihood of kidney stones[J]. Front Endocrinol (Lausanne), 2021, 12, 774567.
17 Chen L , Zhang J , Shen K , et al. Kidney stones are associated with metabolic syndrome in a health screening population: A cross-sectional study[J]. Transl Androl Urol, 2023, 12 (6): 967- 976.
18 Ye Z , Wu C , Xiong Y , et al. Obesity, metabolic dysfunction, and risk of kidney stone disease: A national cross-sectional study[J]. Aging Male, 2023, 26 (1): 2195932.
19 Yuan S , Larsson SC . Assessing causal associations of obesity and diabetes with kidney stones using Mendelian randomization analysis[J]. Mol Genet Metab, 2021, 134 (1/2): 212- 215.
20 王昱, 张慧敏, 邓雪蓉, 等. 尿枸橼酸定量检测在原发性痛风患者肾结石诊断中的应用价值[J]. 北京大学学报(医学版), 2022, 54 (6): 1134- 1140.
21 Xu Z , Yao X , Duan C , et al. Metabolic changes in kidney stone disease[J]. Front Immunol, 2023, 14, 1142207.
22 Deng J , Yu B , Chang Z , et al. Cerium oxide-based nanozyme suppresses kidney calcium oxalate crystal depositions via reversing hyperoxaluria-induced oxidative stress damage[J]. J Nanobiotechnology, 2022, 20 (1): 516.
23 Khan SR , Canales BK , Dominguez-Gutierrez PR . Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17 (6): 417- 433.
24 Flisiński M , Brymora A , Skoczylas-Makowska N , et al. Fructose-rich diet is a risk factor for metabolic syndrome, proximal tubule injury and urolithiasis in rats[J]. Int J Mol Sci, 2021, 23 (1): 203.
25 Xu JZ , Li C , Xia QD , et al. Sex disparities and the risk of urolithiasis: A large cross-sectional study[J]. Ann Med, 2022, 54 (1): 1627- 1635.
26 Zhao JV , Schooling CM . Sex-specific associations of insulin resistance with chronic kidney disease and kidney function: A bi-directional Mendelian randomisation study[J]. Diabetologia, 2020, 63 (8): 1554- 1563.
27 Emami E , Heidari-Soureshjani S , Mohammadjavad AO , et al. Obesity and the risk of developing kidney stones: A systematic review and meta-analysis[J]. Iran J Kidney Dis, 2023, 1 (2): 63- 72.
28 Inci M , Demirtas A , Sarli B , et al. Association between body mass index, lipid profiles, and types of urinary stones[J]. Ren Fail, 2012, 34 (9): 1140- 1143.
29 Kittanamongkolchai W , Mara KC , Mehta RA , et al. Risk of hypertension among first-time symptomatic kidney stone formers[J]. Clin J Am Soc Nephrol, 2017, 12 (3): 476- 482.
30 Stamatelou K , Goldfarb DS . Epidemiology of kidney stones[J]. Healthcare, 2023, 11 (3): 424.
文章导航

/