技术方法

基于颞下颌关节紊乱病诊断标准的临床自动诊断系统的建立及验证

  • 方媛媛 ,
  • 徐帆 ,
  • 雷杰 ,
  • 张昊 ,
  • 张文宇 ,
  • 孙宇 ,
  • 吴宏新 ,
  • 傅开元 ,
  • 毛伟玉
展开
  • 1. 北京大学口腔医学院 · 口腔医院医学影像科,颞下颌关节病口颌面疼痛诊治中心,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
    2. 北京朗视仪器股份有限公司,北京 100084

收稿日期: 2024-09-23

  网络出版日期: 2025-01-25

基金资助

国家重点研发计划(2023YFC2509200);北京大学口腔医院临床新技术新疗法项目(PKUSSNCT-22B13);北京市自然科学基金-海淀原始创新联合基金(L232112);北京大学口腔医(学)院临床研究基金(PKUSS-2023CRF206)

版权

北京大学学报(医学版)编辑部, 2025, 版权所有,未经授权。

Development and validation of a clinical automatic diagnosis system based on diagnostic criteria for temporomandibular disorders

  • Yuanyuan FANG ,
  • Fan XU ,
  • Jie LEI ,
  • Hao ZHANG ,
  • Wenyu ZHANG ,
  • Yu SUN ,
  • Hongxin WU ,
  • Kaiyuan FU ,
  • Weiyu MAO
Expand
  • 1. Department of Oral and Maxillofacial Radiology, Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomato-logy, Beijing 100081, China
    2. LargeV Instrument Corp. Ltd., Beijing 100084, China
FU Kaiyuan, e-mail, kqkyfu@bjmu.edu.cn
MAO Weiyu, e-mail, maoweiyupumch@163.com

Received date: 2024-09-23

  Online published: 2025-01-25

Supported by

the National Key Research and Development Program of China(2023YFC2509200);the Program for New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-22B13);Beijing Natural Science Foundation(L232112);the Clinical Research Foundation of Peking University School and Hospital of Stomatology(PKUSS-2023CRF206)

Copyright

, 2025, All rights reserved, without authorization

摘要

目的: 拟建立基于颞下颌关节紊乱病诊断标准(diagnostic criteria for temporomandibular disorders,DC/TMD)的颞下颌关节紊乱病(temporomandibular disorders,TMD)临床自动诊断系统,以帮助口腔医师快速且准确地做出TMD的临床诊断。方法: 回顾性收集2023年9月至2024年1月就诊于北京大学口腔医院颞下颌关节病口颌面疼痛诊治中心的354例患者临床及影像学资料。基于DC/TMD,采用. NET Framework平台开发并以分支语句作为内部构架搭建TMD临床自动诊断系统,并验证该系统与DC/TMD的符合率。对于退行性关节病、可复性关节盘移位、不可复性关节盘移位伴开口受限、不可复性关节盘移位无开口受限,以影像学检查并结合临床最大主动开口度作为金标准,评估该系统对这4种疾病的诊断效能并与专家诊断结果相比较。结果: TMD临床自动诊断系统诊断TMD各亚型疾病的结果(包括疼痛类疾病和关节类疾病)与专科医师采用DC/TMD所得诊断结果符合率均为100%。TMD临床自动诊断系统及专家对于退行性关节病的诊断灵敏度较低,分别为0.24和0.37,而特异度均高达0.96。两种方法对于可复性关节盘移位和不可复性关节盘移位伴开口受限的诊断准确度均达到0.9以上;TMD临床自动诊断系统对于不可复性关节盘移位无开口受限的诊断灵敏度为0.59, 相对专家(0.87)较低,但特异度两者均较高(0.92)。TMD临床自动诊断系统对于大部分TMD亚型的诊断结果与专家诊断结果的Kappa值接近1,仅不可复性关节盘移位无开口受限的Kappa值为0.68。结论: 本研究开发并验证评估了一种基于DC/TMD的TMD临床自动诊断系统,该系统可以帮助口腔医师快速、准确诊断并分类TMD,有望成为辅助TMD诊断的重要工具。

本文引用格式

方媛媛 , 徐帆 , 雷杰 , 张昊 , 张文宇 , 孙宇 , 吴宏新 , 傅开元 , 毛伟玉 . 基于颞下颌关节紊乱病诊断标准的临床自动诊断系统的建立及验证[J]. 北京大学学报(医学版), 2025 , 57(1) : 192 -201 . DOI: 10.19723/j.issn.1671-167X.2025.01.029

Abstract

Objective: To develop a clinical automated diagnostic system for temporomandibular disorders (TMD) based on the diagnostic criteria for TMD (DC/TMD) to assist dentists in making rapid and accurate clinical diagnosis of TMD. Methods: Clinical and imaging data of 354 patients, who visited the Center for TMD & Orofacial Pain at Peking University Hospital of Stomatology from September 2023 to January 2024, were retrospectively collected. The study developed a clinical automated diagnostic system for TMD using the DC/TMD, built on the. NET Framework platform with branching statements as its internal structure. Further validation of the system on consistency and diagnostic efficacy compared with DC/TMD were also explored. Diagnostic efficacy of the TMD clinical automated diagnostic system for degenerative joint diseases, disc displacement with reduction, disc displacements without reduction with limited mouth opening and disc displacement without reduction without limited mouth opening was evaluated and compared with a specialist in the field of TMD. Accuracy, precision, specificity and the Kappa value were assessed between the TMD clinical automated diagnostic system and the specialist. Results: Diagnoses for various TMD subtypes, including pain-related TMD (arthralgia, myalgia, headache attributed to TMD) and intra-articular TMD (disc displacement with reduction, disc displacement with reduction with intermittent locking, disc displacement without reduction with limited opening, disc displacement without reduction without limited opening, degenerative joint disease and subluxation), using the TMD clinical automated diagnostic system were completely identical to those obtained by the TMD specialist based on DC/TMD. Both the system and the expert showed low sensitivity for diagnosing degenerative joint disease (0.24 and 0.37, respectively), but high specificity (0.96). Both methods achieved high accuracy (> 0.9) for diagnosing disc displacements with reduction and disc displacements without reduction with limited mouth opening. The sensitivity for diagnosing disc displacement without reduction without limited mouth opening was only 0.59 using the automated system, lower than the expert (0.87), while both had high specificity (0.92). The Kappa values for most TMD subtypes were close to 1, except the disc displacement without reduction without limited mouth opening, which had a Kappa value of 0.68. Conclusion: This study developed and validated a reliable clinical automated diagnostic system for TMD based on DC/TMD. The system is designed to facilitate the rapid and accurate diagnosis and classification of TMD, and is expected to be an important tool in clinical scenarios.

参考文献

1 Iturriaga V , Bornhardt T , Velasquez N . Temporomandibular joint: Review of anatomy and clinical implications[J]. Dent Clin North Am, 2023, 67 (2): 199- 209.
2 Valesan LF , Da-Cas CD , Réus JC , et al. Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25 (2): 441- 453.
3 Cao Y , Yap AU , Lei J , et al. Oral health-related quality of life of patients with acute and chronic temporomandibular disorder diagnostic subtypes[J]. J Am Dent Assoc, 2022, 153 (1): 50- 58.
4 Jung HD , Kim SY , Park HS , et al. Orthognathic surgery and temporomandibular joint symptoms[J]. Maxillofac Plast Reconstr Surg, 2015, 37 (1): 14.
5 Michelotti A , Rongo R , D'antò V , et al. Occlusion, orthodontics, and temporomandibular disorders: Cutting edge of the current evidence[J]. J World Fed Orthod, 2020, 9 (Suppl 3): S15- S18.
6 Din NMU , Dar RA , Rasool M , et al. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead[J]. Comput Biol Med, 2022, 149, 106073.
7 Chan HP , Hadjiiski LM , Samala RK . Computer-aided diagnosis in the era of deep learning[J]. Med Phys, 2020, 47 (5): e218- e227.
8 Wu S , Roberts K , Datta S , et al. Deep learning in clinical natural language processing: A methodical review[J]. J Am Med Inform Assoc, 2020, 27 (3): 457- 470.
9 邵毅, 张铭志, 许言午, 等. 人工智能在视网膜图像自动分割和疾病诊断中的应用指南(2024)[J]. 眼科新进展, 2024, 44 (8): 592- 601.
10 魏世成, 王翰章. 颞颌关节紊乱综合征专家系统的设计与实现[J]. 华西口腔医学杂志, 1990, (3): 216- 220.
11 Schiffman E , Ohrbach R , Truelove E , et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group?[J]. J Oral Facial Pain Headache, 2014, 28 (1): 6- 27.
12 傅开元. 2014年新版国际颞下颌关节紊乱病分类及诊断标准解读[J]. 中华口腔医学杂志, 2017, 52 (6): 374- 376.
13 Minervini G , Marrapodi MM , Siurkel Y , et al. Accuracy of temporomandibular disorders diagnosis evaluated through the diagnostic criteria for temporomandibular disorder (DC/TDM) axis Ⅱ compared to the axis Ⅰ evaluations: A systematic review and meta-analysis[J]. BMC Oral Health, 2024, 24 (1): 299.
14 傅开元, 雷杰. 颞下颌关节紊乱病的分类、诊断及治疗进展[J]. 口腔医学, 2024, 44 (1): 6- 10.
15 Zhang XL , Sun JL , He DM . Review of the studies on the relationship and treatment of anterior disk displacement and dentofacial deformity in adolescents[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2023, 135 (4): 470- 474.
16 Bas B , Ozgonenel O , Ozden B , et al. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: A preliminary study[J]. J Oral Maxillofac Surg, 2012, 70 (1): 51- 59.
17 Ta?k?ran U , ?unka? M . A deep learning based decision support system for diagnosis of temporomandibular joint disorder[J]. Applied Acoustics, 2021, 182, 108292.
18 Sharma N, Dar IG, Kumar J, et al. Temporomandibular joint syndrome prediction using neural network[C]/ /Ray K, Sharan SN, Rawat S, et al. Proceedings of the Engineering Vibration, Communication and Information Processing: ICoEVCI 2018, India. Singapore: Springer, 2019: 1-8.
19 Yap AU , Lei J , Zhang XH , et al. TMJ degenerative joint disease: Relationships between CBCT findings, clinical symptoms, and signs[J]. Acta Odontol Scand, 2023, 81 (7): 562- 568.
20 Patel A , Tee BC , Fields H , et al. Evaluation of cone-beam computed tomography in the diagnosis of simulated small osseous defects in the mandibular condyle[J]. Am J Orthod Dentofacial Orthop, 2014, 145 (2): 143- 156.
21 Yadav S , Palo L , Mahdian M , et al. Diagnostic accuracy of 2 cone-beam computed tomography protocols for detecting arthritic changes in temporomandibular joints[J]. Am J Orthod Dentofacial Orthop, 2015, 147 (3): 339- 344.
22 Lee KS , Kwak HJ , Oh JM , et al. Automated detection of TMJ osteoarthritis based on artificial intelligence[J]. J Dent Res, 2020, 99 (12): 1363- 1367.
23 Choi E , Kim D , Lee JY , et al. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram[J]. Sci Rep, 2021, 11 (1): 10246.
文章导航

/