技术方法

乳牙缺失数字化丝圈间隙保持器的三维有限元分析

  • 马丽娟 ,
  • 腾雍辉 ,
  • 王勇 ,
  • 赵一姣 ,
  • 张馨月 ,
  • 秦庆钊 ,
  • 尹东
展开
  • 1. 北京大学口腔医学院·口腔医院口腔医学数字化研究中心,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,北京 100081
    2. 宁夏回族自治区人民医院(宁夏医科大学附属自治区人民医院)口腔科,银川 750002
    3. 银川市口腔医院正畸科,银川 750002
    4. 北京大学医学部医学技术研究院,北京 100191

收稿日期: 2024-08-29

  网络出版日期: 2025-04-12

基金资助

国家自然科学基金(82271039);国家自然科学基金(82071171);北京市自然科学基金(L242132);北京市自然科学基金(L232100);宁夏自然科学基金(2023AAC03494)

版权

北京大学学报(医学版)编辑部, 2025, 版权所有,未经授权,不得转载。

Three-dimensional finite element analysis of digital wire loop space maintainers for missing deciduous teeth

  • Lijuan MA ,
  • Yonghui TENG ,
  • Yong WANG ,
  • Yijiao ZHAO ,
  • Xinyue ZHANG ,
  • Qingzhao QIN ,
  • Dong YIN
Expand
  • 1. Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing 100081, China
    2. Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region(Ningxia Medical University), Yinchuan 750002, China
    3. Department of Orthodontic, Yinchuan Stomatological Hospital, Yinchuan 750002, China
    4. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
ZHAO Yijiao, e-mail, kqcadcs@bjmu.edu.cn

Received date: 2024-08-29

  Online published: 2025-04-12

Supported by

the National Natural Science Foundation of China(82271039);the National Natural Science Foundation of China(82071171);Beijing Natural Science Foundation(L242132);Beijing Natural Science Foundation(L232100);Natural Science Foundation of Ningxia(2023AAC03494)

Copyright

, 2025, All rights reserved. Unauthorized reproduction is prohibited.

摘要

目的: 建立下颌骨及乳牙缺失数字化丝圈间隙保持器的三维有限元模型,以探讨下颌第二乳磨牙缺失患者佩戴丝圈间隙保持器时的应力、变形及剪切力情况。方法: 通过对患儿进行锥形束CT(cone beam computed tomography,CBCT)扫描,使用Mimics 21.0软件建立下颌第二乳磨牙缺失的数字模型。利用儿童丝圈间隙保持器设计软件构建冠部固位与丝圈结构一体化的全冠及带环丝圈间隙保持器的数字模型,并分别采用钴铬合金、聚醚醚酮(polyether ether ketone,PEEK)及钛合金三种材料进行构建。在ANSYS Work Beach 2023 R2软件中,对模型46和84的咬合面施加垂直和沿牙体长轴倾斜45°的70 N载荷,以及丝圈上表面10 N载荷,模拟患儿佩戴丝圈间隙保持器时的正中咬合与侧方咬合,分析丝圈间隙保持器及基牙的受力情况。结果: 在不同的加载条件下,带环丝圈间隙保持器的最大主应力明显低于全冠丝圈间隙保持器。应力云图显示,最大主应力峰值出现在丝圈末端与冠部结构连接处,表明这一部位更容易发生断裂;使用PEEK材料制作的带环丝圈间隙保持器内部组织面的最大剪切应力最小;46和84牙齿的等效应力(Von Mises应力)最小,分别为23.18 MPa和36.35 MPa,且最大等效应力分别位于46牙齿近中、84牙齿远中靠近牙根部与丝圈间隙保持器接触的区域。结论: 在第二乳磨牙缺失的情况下,佩戴数字化带环丝圈间隙保持器能够有效分散应力,且PEEK材料的带环丝圈间隙保持器在一定程度上降低了基牙的受力,其在临床应用中显示出一定的优越性。

本文引用格式

马丽娟 , 腾雍辉 , 王勇 , 赵一姣 , 张馨月 , 秦庆钊 , 尹东 . 乳牙缺失数字化丝圈间隙保持器的三维有限元分析[J]. 北京大学学报(医学版), 2025 , 57(2) : 376 -383 . DOI: 10.19723/j.issn.1671-167X.2025.02.024

Abstract

Objective: To establish a three-dimensional finite element model of a digital wire loop space maintainer for the mandible and primary tooth loss, in order to investigate the stress, deformation, and shear force experienced by patients with the loss of the second primary molar when wearing the wire loop space maintainer. Methods: Cone beam computed tomography (CBCT) scans were performed on the patients to create a digital model of the mandible with the absence of the second primary molar using Mimics 21.0 software. A digital model integrating the crown's retention and the wire loop structure of the full crown and ring wire loop space maintainer was constructed using pediatric space maintainer design software, utilizing three different materials: cobalt-chromium alloy, polyether ether ketone (PEEK), and titanium alloy. In ANSYS Work Beach 2023 R2 software, vertical loads of 70 N, tilted 45° along the long axis of the tooth loads of 70 N, and a 10 N load on the surface of the wire loop were applied to the occlusal surfaces of models 46 and 84, simulating centric and lateral occlusions during chewing with the wire loop space maintainer in place. The stress states of the wire loop space maintainer and supporting teeth were analyzed. Results: Under various loading conditions, the maximum principal stress of the ring wire loop space maintainer was significantly lower than that of the full crown. Stress contour maps indicated that the peak of the maximum principal stress occurred at the junction of the wire loop and crown structure, indicating that this area was more susceptible to fracture. The ring wire loop space maintainer made from PEEK material exhibited the lowest maximum shear stress on the internal organizational surfaces, with equivalent stresses of 23.18 MPa and 36.35 MPa for models 46 and 84, respectively. Stress contour maps demonstrated that the maximum stress on tooth 46 was located at its mesial, while the maximum stress on tooth 84 was situated near the root area on its distal, in contact with the wire loop space maintainer. Conclusion: In cases of second primary molar loss, wearing the digital ring wire loop space maintainer can effectively distribute stress, and the ring wire loop space maintainer made from PEEK material reduces the stress experienced by supporting teeth to some extent, demonstrating its superiority in clinical application.

参考文献

1 Slabkovskaya A , Abramova M , Morozova N , et al. Biomechanics of changing the position of permanent teeth with early loss of the first temporary molars[J]. Georgian Med News, 2021 (316/317): 89- 96.
2 Jayachandar D , Gurunathan D , Jeevanandan G . Prevalence of early loss of primary molars among children aged 5-10 years in Chennai: A cross-sectional study[J]. J Indian Soc Pedod Prev Dent, 2019, 37 (2): 115- 119.
3 Sabeti AK , Karimizadeh Z , Rafatjou R . Maximum equivalent stress induced and the displacement of the developing permanent first molars after the premature loss of primary second molars: A finite element analysis[J]. Dent Med Probl, 2020, 57 (4): 401- 409.
4 秦庆钊, 胡嘉, 陈小贤, 等. 儿童带环丝圈式间隙保持器的椅旁数字化设计与制作方法初探[J]. 华西口腔医学杂志, 2024, 42 (2): 234- 241.
5 冀堃, 朱顶贵, 陆伟, 等. 聚醚酮酮数字化乳牙早失间隙保持器的临床应用观察[J]. 中华口腔医学研究杂志(电子版), 2019, 13 (6): 368- 372.
6 张静兰, 莫伟兰, 刘芳, 等. 三种间隙保持器的临床效果评价[J]. 新医学, 2021, 52 (10): 768- 771.
7 Tokuc M , Yilmaz H . Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers[J]. Int J Paediatr Dent, 2022, 32 (5): 764- 771.
8 Trivedi G , Singh PP , Oinam AS , et al. Cone-beam computed tomography (CBCT) dose optimization technique and image quality assessment scoring[J]. J Cancer Res Ther, 2024, 20 (1): 71- 78.
9 Rees JS , Jacobsen PH . Elastic modulus of the periodontal ligament[J]. Biomaterials, 1997, 18 (14): 995- 999.
10 Hart RT , Hennebel VV , Thongpreda N , et al. Modeling the biomechanics of the mandible: A three-dimensional finite element study[J]. J Biomech, 1992, 25 (3): 261- 286.
11 Nishigawa G , Matsunaga T , Maruo Y , et al. Finite element analysis of the effect of the bucco-lingual position of artificial posterior teeth under occlusal force on the denture supporting bone of the edentulous patient[J]. J Oral Rehabil, 2003, 30 (6): 646- 652.
12 Eskitascioglu G , Usumez A , Sevimay M , et al. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study[J]. J Prosthet Dent, 2004, 91 (2): 144- 150.
13 W.A. 纳什. 材料力学[M]. 4版. 赵志岗, 译. 北京: 科学出版社, 2002: 20.
14 Heravi F , Salari S , Tanbakuchi B , et al. Effects of crown-root angle on stress distribution in the maxillary central incisors' PDL during application of intrusive and retraction forces: A three-dimensional finite element analysis[J]. Prog Orthod, 2013, 14, 26.
15 Hedayati Z , Shomali M . Maxillary anterior en masse retraction using different antero-posterior position of mini screw: A 3D finite element study[J]. Prog Orthod, 2016, 17 (1): 31.
16 Yi Q , Feng X , Zhang C , et al. Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth[J]. Connect Tissue Res, 2021, 62 (4): 402- 410.
17 Saillard E , Gardegaront M , Levillain A , et al. Finite element models with automatic computed tomography bone segmentation for failure load computation[J]. Sci Rep, 2024, 14 (1): 16576.
18 Braun S , Hnat WP , Freudenthaler JW , et al. A study of maximum bite force during growth and development[J]. Angle Or-thod, 1996, 66 (4): 261- 264.
19 Owais AI , Shaweesh M , Abu Alhaija ES . Maximum occusal bite force for children in different dentition stages[J]. Eur J Orthod, 2013, 35 (4): 427- 433.
20 Christensen J , Matzen LH , Hedegaard M , et al. Scout images acquired prior to cone beam CT acquisitions: Reproducibility of findings and added diagnostic information[J]. Dentomaxillofac Ra-diol, 2024, 53 (8): 527- 534.
21 Abdin M , Ahmed E , Hamad R , et al. Success rates and failures of fixed and removable space maintainers after the premature loss of primary molars[J]. Quintessence Int, 2024, 55 (4): 304- 312.
22 Gomes MC , Perazzo MF , Neves éTB , et al. Premature primary tooth loss and oral health-related quality of life in preschool children[J]. Int J Environ Res Public Health, 2022, 19 (19): 12163.
23 刘磊, 马方方, 夏彬, 等. 聚醚醚酮/碳化硅复合材料的结构及性能[J]. 高分子材料科学与工程, 2023, 39 (11): 75- 81.
24 李思媛, 薛雅娟. 聚醚醚酮材料的性能及在儿童口腔中的应用[J]. 医疗装备, 2023, 36 (21): 162- 164.
25 戴丽, 冀堃, 廖莹, 等. 聚醚酮酮数字化乳牙早失间隙保持器的临床效果及满意度[J]. 中国临床研究, 2021, 34 (12): 1670- 1672.
文章导航

/