专家笔谈

低强度激光疗法治疗男性生殖与性功能障碍

  • 牛远杰 1 ,
  • 辛钟成 , 1, 2, * ,
  • 林桂亭 3 ,
  • 丁攀 1 ,
  • 潘建成 1 ,
  • 封玉宏 1 ,
  • 郭应禄 2
展开
  • 1. 天津医科大学第二医院泌尿外科男性生殖与性医学部, 天津市泌尿外科研究所, 天津 300211
  • 2. 北京大学第一医院泌尿外科, 北京 100034
  • 3. Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA

收稿日期: 2025-04-18

  网络出版日期: 2025-08-02

版权

版权所有,未经授权,不得转载。

Low-level laser therapy for the treatment of male infertility and erectile dysfunction

  • Yuanjie NIU 1 ,
  • Zhongcheng XIN , 1, 2, * ,
  • Guiting LIN 3 ,
  • Pan DING 1 ,
  • Jiancheng PAN 1 ,
  • Yuhong FENG 1 ,
  • Yinglu GUO 2
Expand
  • 1. Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University; Tianjin Institute of Urology, Tianjin 300211, China
  • 2. Department of Urology, Peking University First Hospital, Beijing 100034, China
  • 3. Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
XIN Zhongcheng, e-mail,

Received date: 2025-04-18

  Online published: 2025-08-02

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

摘要

低强度激光疗法(low-level laser therapy, LLLT)常用波长600~1 000 nm, 功率5~500 mW, 为红光或近红外光(near-infrared, NIR)。LLLT作为一种非侵入性治疗方式, 作用于细胞色素C氧化酶(cytochrome C oxidase, CCO)等靶点, 激活PI3K/Akt、MAPK/ERK等信号通路, 增强线粒体三磷酸腺苷(adenosine triphosphate, ATP)合成并调节氧化应激与炎症反应, 具有抗氧化、抗炎及促细胞修复功能, 在皮肤相关疾病、癌症和骨关节疾病等临床领域被广泛应用。近年来研究表明, LLLT可改善勃起功能障碍(erectile dysfunction, ED)模型动物阴茎海绵体病理变化, 康复治疗ED的潜在效果与激活PI3K/Akt、MAPK/ERK等信号通路相关。LLLT处理新鲜及冻融精子的研究发现, LLLT显著提升精子运动能力和顶体完整性效果与调节线粒体能量代谢重编程(如CCO介导的电子传递链激活)、氧化应激动态平衡(ROS/GSH-Px/SOD轴)及表观遗传修饰(DNA甲基化、组蛋白乙酰化)等有关; 在LLLT治疗阴囊热应激诱导的少精子症模型中, LLLT可显著促进生精上皮细胞分化, 其提升血清睾酮水平与抑制脂质过氧化、降低活性氧(reactive oxygen species, ROS)水平有关。这些研究结果提示, LLLT的光生物调节作用在男性生殖与性功能障碍的康复治疗中具有潜在效果。未来有待于开展融合生命科学、工程学与物理学的多学科研究, 以优化LLLT设备的物理参数; 同时, 通过高质量的基础与临床研究, 促进其在相关疾病治疗中的转化应用。

本文引用格式

牛远杰 , 辛钟成 , 林桂亭 , 丁攀 , 潘建成 , 封玉宏 , 郭应禄 . 低强度激光疗法治疗男性生殖与性功能障碍[J]. 北京大学学报(医学版), 2025 , 57(4) : 627 -632 . DOI: 10.19723/j.issn.1671-167X.2025.04.001

Abstract

Low-level laser therapy (LLLT), a noninvasive photobiomodulation technique, employs red or near-infrared (NIR) light (600-1 000 nm) with power outputs ranging from 5 to 500 mW. It exerts therapeutic effects through molecular mechanisms, specifically the activation of cytochrome C oxidase (CCO) and the modulation of intracellular signaling pathways. By enhancing mitochondrial adenosine triphosphate (ATP) synthesis, LLLT mitigates oxidative stress, regulates the reactive oxygen species (ROS)/glutathione peroxidase (GSH-Px)/superoxide dismutase (SOD) axis, and activates key pathways, including phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). These mechanisms confer antioxidant, anti-inflammatory, and pro-regenerative properties to LLLT, making it a viable intervention for dermatological conditions, oncological therapies, and musculoskeletal disorders. Recent preclinical studies underscore LLLT' s potential in male reproductive health. Specifically, it ameliorates cavernosal fibrosis and endothelial dysfunction in erectile dysfunction (ED) models by upregulating the PI3K/Akt and MAPK/ERK pathways. In the context of sperm biology, LLLT enhances motility and acrosomal integrity in both fresh and cryopreserved spermatozoa. This is achieved through mitochondrial metabolic reprogramming, such as CCO-mediated electron transport chain activation, redox homeostasis restoration, and epigenetic modulation involving DNA methylation and histone acetylation. Additionally, LLLT alleviates scrotal heat-induced oligospermia by promoting seminiferous epithelial differentiation, elevating serum testosterone levels, and suppressing lipid peroxidation. These findings highlight the translational potential of LLLT in regenerative medicine, particularly for male sexual and reproductive disorders. Future research efforts should focus on interdisciplinary collaborations spanning life sciences, engineering, and physics. The goal is to optimize laser parameters, including wavelength, irradiance, and treatment duration, and establish standardized protocols. Rigorous preclinical and clinical investigations are paramount to validate the safety, efficacy, and long-term outcomes of LLLT, ultimately paving the way for its integration into precision medicine frameworks for urological and reproductive therapies.

微能量医学将是生命科学的第三次革命, 融合了生命科学、物理学与工程学的新兴领域, 涵盖了超声波、冲击波及电磁场等多种能量形式[1]。低强度激光疗法(low-level laser therapy, LLLT), 也称为光生物调节(photobiomodulation, PBM)[2], 作为一种微能量治疗方法, 无创、高效的特性预示着广阔的应用前景和发展空间。
近年来, 随着LLLT作用机制的深入研究和设备参数的优化, 其临床研究已逐步扩展至口腔疾病、皮肤病、眼病、肿瘤及骨关节疾病等医学领域[3]。在口腔颌面领域, LLLT促进正畸扩张术后骨组织和口腔黏膜的修复, 已获多项临床研究证实, 并且可加速术后腭中缝区骨再生[4-5]和口腔黏膜创伤愈合[6]。在内分泌领域, Höfling等[7]开展的慢性自身免疫性甲状腺炎随机对照试验(n=43)证实, 830 nm激光干预可显著降低患者甲状腺过氧化物酶抗体水平、提升甲状腺超声回声强度, 并使维持甲状腺功能正常所需的左甲状腺素日剂量减少。在妇科领域, Frederice等[8]通过双盲随机试验(n=103)证实阴道拉伸联合光生物调节疗法可短期改善盆底肌筋膜疼痛患者的性交疼痛发生率及性功能评分。LLLT在肿瘤康复及眼科领域亦有临床应用, 系统评价显示其可显著降低乳腺癌相关淋巴水肿患肢体积[9]、缩短高度近视患者眼轴长度[10]。在男性生殖领域, LLLT的应用进一步拓展至治疗勃起功能障碍(erectile dysfunction, ED)[11]、少弱精症[12]、盆底综合征[13]、尿失禁[14]、间质性膀胱炎[15]、阴茎硬结症[16]等疾病。因此, 深入理解LLLT的作用机制, 总结优化设备参数, 对推动其临床应用具有重要意义。

1 低强度激光的物理特性和分类

描述低强度激光的各种参数包括功率密度(mW/cm2)、波长(nm)、频率(Hz)、辐照时间(s)、剂量(J/cm2)、治疗方案(持续时间/间隔)等[17]。临床上常用的低强度激光主要是波长600~1 000 nm、功率5~500 mW的红光或近红外光(near-infrared, NIR)[3]。低强度激光存在明显的双相剂量效应, 低剂量具有刺激作用, 而高剂量则具有抑制作用[18]。能量参数方面, 用于表面靶点的剂量范围为1~10 J/cm2, 用于深部组织的剂量为10~50 J/cm2[19]。若以脉冲模式调节频率(1~10 000 Hz)和占空比(10%~50%), 可进一步减少热积累并增强光化学响应[20]。低强度激光光源主要包括氦氖激光(He-Ne, 632.8 nm)、砷化镓铝激光(GaAlAs, 660~980 nm)、砷化镓激光(GaAs, 904 nm)、钕掺杂钇铝石榴石激光(Nd: YAG, 532 nm/1 064 nm)、发光二极管激光(LED, 600~950 nm)等[21]。国际安全标准将激光治疗设备归类为3B类激光(5~500 mW), 需符合国际电工委员会(International Electrotechnical Commission, IEC)制定的辐射安全规范(IEC 60825-1), 并遵循WHO关于非侵入式医疗器械的管理要求。
低强度激光以低能量刺激细胞或组织, 能够在没有显著热效应的情况下调节细胞功能, 因此, 也被称为“软”激光或冷激光治疗[22]。低强度激光的生物学效应与其物理特性密切相关, 不同波长光的组织穿透能力、靶分子选择性和能量吸收模式差异显著。目前根据其波长, 临床上常见的低强度激光分为3类: 蓝光、绿光和红光。短波长蓝光(400~500 nm)与绿光(500~570 nm)主要依赖于光敏性钙离子通道(如TRPV1)的激活[23], 其光子能量因表皮黑色素和血红蛋白的高效吸收而穿透受限, 更多应用于表皮层。红光(630~700 nm)以细胞色素C氧化酶(cytochrome C oxidase, CCO)为核心靶点, 通过增强电子传递链活性促进ATP合成, 改善细胞能量代谢, 适用于浅表组织[19]。NIR(800~1 000 nm)除靶向CCO外, 长波段(900 nm)部分光子能量可被组织内水分子吸收[24], 协同激活线粒体与非线粒体信号通路, 尽管能量衰减较显著, 但其穿透能力较强, 可有效作用于深层肌肉、骨骼及神经组织[25]

2 LLLT的生物学机制

近年来LLLT在组织再生领域展现出巨大潜力[21], 其核心机制是通过特定波长的低强度光与细胞内发色团(如CCO)相互作用, 调控线粒体功能, 促进三磷酸腺苷(adenosine triphosphate, ATP)合成、生长因子分泌及关键信号通路激活, 从而加速细胞增殖、分化和组织修复[21], 因此, 也被称为PBM。与传统光热疗法或光动力疗法不同, LLLT无需外源性光敏剂或热效应, 降低了组织损伤风险[22]
LLLT可通过与细胞内光敏分子作用, 直接或间接调控多种信号分子、生长因子、转录因子和基因表达, 以实现抗氧化、抗炎、促进细胞增殖和迁移等生物学效应。红光或NIR(600~1 100 nm)主要与CCO等光敏分子相互作用[26]。作为线粒体呼吸链的第四复合体, CCO的铜中心和血红素基团对远红至NIR具有特征性吸收光谱。光激发诱导CCO金属中心的氧化还原态发生改变, 通过解离抑制一氧化氮(nitric oxide, NO)分子并增强氧结合能力, 从而提升电子传递链效率及ATP合成速率[27]。这一过程不仅重构线粒体膜电位, 更通过调控活性氧(reactive oxygen species, ROS)的亚毒性水平启动细胞适应性反应[27], 而532 nm激光却通过激活肥大细胞中的TRPV4通道, 使细胞内Ca2+内流增加进而大量释放组织胺[28]。不同波长的激光, 其生物学效应不同, 如表 1所示。
表1 不同波长低强度激光对细胞信号通路的调控机制

Table 1 Mechanisms of cellular signaling pathway regulation by multi-wavelength low-level laser

Wavelength/nm Signaling pathway Biological effects Reference
904 Catalase Reduces ROS, promotes wound healing in diabetic mice [29]
635 NF-κB Reduces ROS, inhibits NF-κB, decreases PGE2, COX-1, and COX-2 expression, anti-inflammatory [30]
980 PI3K/Akt/Bcl-2 Regulates S-phase progression in osteoblasts [31]
910 MAPK/ERK Enhances cell migration and cytoskeletal remodeling [32]
808 Hedgehog (Ptch, Ihh, Smo, Gli) Promotes osteoblast proliferation [33]
650 NO/Ca2+/ROS Enhances sperm motility [34]
635 VEGF Reduces VEGF concentration, increases endothelial cell proliferation [35]

NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ROS, reactive oxygen species; PGE2, prostaglandin E2; COX-1, cyclooxygenase-1; COX-2, cyclooxygenase-2; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; Bcl-2, B-cell lymphoma 2; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; NO, nitric oxide; Ca2+, calcium ion; VEGF, vascular endothelial growth factor.

表 1可以看出, 当前研究瓶颈在于光剂量参数(波长、功率密度、辐照时间)与生物学效应间的非线性关系, 未来需建立基于组织光穿透深度、细胞氧化还原状态及线粒体密度的精准剂量模型, 通过单细胞测序技术、多组学(基因组学、转录组学、蛋白质组学、代谢组学)分析等构建LLLT响应的分子图谱, 揭示其调控基因表达、蛋白功能、细胞生物学行为的机制, 最终实现从经验治疗到可量化、个性化的精准医疗。

3 LLLT在ED中的应用

目前LLLT用于治疗ED的研究尚少。Yang等[36]以808 nm(1~16 J/cm2)NIR治疗糖尿病ED模型大鼠, 设置辐照面积约为0.78 cm2, 平均激光功率密度为212 mW/cm2, 每周对大鼠进行照射3次, 持续2周, 治疗完成后1周评估勃起功能, 结果发现激光治疗组均有不同程度的勃起功能恢复, 其中4 J/cm2组效果最佳。4 J/cm2组大鼠的线粒体功能和形态均有改善, 并发现LLLT可显著降低氧化应激水平, 改善阴茎海绵体的组织结构。作者还测试了大鼠阴茎海绵体不同部位对激光的吸收情况, 发现外部海绵体的吸收率约为33%, 而内部海绵体(皮肤和肌肉遮挡)的吸收率仅为7%左右。随着照射时间的延长, 16 J/cm2组的皮肤温度最高升到38.2 ℃。
Anita等[11]通过损伤成年雄性小鼠海绵神经诱发ED 2周后, 连续5 d进行LLLT治疗, 采用660 nm±3%(46.8 mW/cm2)红光和830 nm±2%(85.3 mW/cm2)红外光。治疗结果显示两种方案均能够显著恢复小鼠阴茎勃起功能, 而两种治疗联用使模型动物的勃起功能恢复到了对照组的约90%。体外实验发现660 nm±3%(36.0 mW/cm2)和830 nm±2%(81.0 mW/cm2)激光均可显著促进阴茎背神经节和盆底神经节的轴突延长。此外, 治疗组的小鼠阴茎中神经营养因子、血管生成因子等表达水平显著增加。

4 LLLT在男性生殖领域中的应用

4.1 LLLT对精子发生的调控作用

动物实验表明, LLLT可改善睾丸微环境并促进精子发生。在阴囊热应激诱导的少精子症模型中, Hasani等[37]及Soltani等[38]均发现890 nm激光(0.03 J/cm2)干预可显著促进生精上皮细胞分化, 提升血清睾酮水平, 激活谷胱甘肽(glutathione, GSH)抗氧化通路并抑制ROS蓄积和炎症因子表达。Rezaei等[39]研究显示, 该能量参数在白消安诱导无精子症模型中可恢复睾酮分泌、减少生精细胞凋亡、增强线粒体功能, 而0.2 J/cm2未见明显改善。Aghajanpour等[40]团队证实LLLT可促进有丝分裂基因表达, 降低ROS及凋亡基因水平。Ziaeipour等[41]研究发现0.03 J/cm2能逆转生精阻滞, 恢复氧化应激-线粒体功能动态平衡, 增强睾丸细胞数量, 而0.2 J/cm2效果有限。然而, Dadras等[42]研究显示, 在糖尿病模型中, 0.2 J/cm2较0.03 J/cm2更能提升支持细胞密度和精子运动参数。现有研究表明, LLLT对多种病因导致的睾丸功能障碍具有改善作用, 但其最佳治疗参数仍待进一步研究。

4.2 LLLT对新鲜精子功能的调控

弱精子症与线粒体能量代谢障碍密切相关, 精子运动所需的ATP约95%来源于线粒体氧化磷酸化。LLLT可靶向CCO, 激活电子传递链, 提高ATP合成, 同时调控NO代谢, 促进精子运动和顶体反应。Firestone等[43]研究表明, 905 nm激光(50 mW/cm2, 30 s)可提升精子活力且无DNA损伤。Ban-Frangez等[44]研究不同波长(850 nm、625/660/850 nm、470 nm、625/660/470 nm)对弱精症患者精子的影响, 发现多波段可能协同增效。LLLT的效应具有剂量依赖性, Safian等[45]研究3种光照方案(红光、NIR+红光、NIR)及不同能量密度(0.6、1.2、2.4 J/cm2), 发现0.6 J/cm2 NIR在改善前向运动精子率、精子存活率、精子DNA完整性等方面最为显著, 而红光组精子存活率降低, 证实能量密度阈值效应。Espey等[46]发现, 655 nm脉冲激光(25 mW/cm2, 200 ns脉宽, 4~6 J/cm2)可提高精子活力, 对DNA完整性无影响。Preece等[47]评估633 nm激光(5.66 mW/cm2)的温升效应, 发现影响微弱。此外, LLLT对精子的作用可能因物种差异而有所不同。

4.3 LLLT在冻融精子中的生物学效应

研究表明, LLLT可改善冷冻复苏精子的功能。Ömür[48]发现, LLLT可提升公牛冻融精子的顶体完整率、动力学参数及线粒体膜电位(ΔΨm), 并呈剂量依赖性增强基质金属蛋白酶活性。Safian等[49]证实, 810 nm激光(0.6 J/cm2)可提高冻融精子前向运动率, 机制与降低ROS水平及抑制脂质过氧化相关。此外, 冷冻前LLLT比复苏后干预效果更优[50]。Gabel等[51]通过系统研究不同LLLT参数对精子活力的影响, 发现660/850 nm LED(45 mW/cm2, 75 s)或810 nm激光(90 mW/cm2, 20 s)照射可使冷冻复苏后精子活力显著提高。该研究还发现, 照射时间控制至关重要, 新鲜精液经LED照射100 s或激光照射15 s后孵育可达到最佳活力峰值, 过量照射可能导致光毒性、线粒体功能紊乱及精子活力下降。
LLLT在优化人类精子冷冻保存及提升生育潜能领域虽前景广阔, 但其临床应用仍面临多重挑战, 需通过系统化研究构建完整证据链[50], 首要任务在于解析LLLT调控精子功能的分子机制, 聚焦线粒体能量代谢重编程(如CCO介导的电子传递链激活)、氧化应激动态平衡(ROS/GSH-Px/SOD轴)及表观遗传修饰(DNA甲基化、组蛋白乙酰化)等核心通路, 结合单细胞测序与多组学整合模型揭示其分子开关;其次, 亟待建立标准化技术体系, 明确波长-能量密度-照射时间的剂量效应曲线, 制定涵盖精子运动参数、功能完整性及遗传安全性的多维评价标准[3]。LLLT处理精子后子代的遗传安全性评估任务艰巨, 需进行新生儿远期随访以评估发育异常风险。

5 LLLT在泌尿系统其他疾病中的拓展应用

LLLT凭借其抗炎、抗纤维化及神经调节特性, 在泌尿系统疾病治疗中展现出多维度应用潜力。Ishibashi等[52]基于醋酸诱导的大鼠膀胱炎模型, 采用830 nm的NIR(667 mW/cm2)于第6腰椎腰骶椎间孔区域照射皮肤, 具体参数为: 双侧照射(光斑面积1.5 cm2/侧)、单次能量密度120 J/cm2(总240 J/cm2)、脉冲模式(占空比10%, 脉宽20 ms, 频率5 Hz), 持续干预5 d。尿动力学分析显示, 治疗组膀胱容量显著增加, 排尿频率降低, 其机制可能与调控TRPV1通道介导的神经源性炎症反应相关, 提示LLLT可作为膀胱高敏感状态及逼尿肌过度活动的潜在干预策略。Butrick等[15]通过经阴道LLLT治疗女性间质性膀胱炎/膀胱疼痛综合征, 约2/3接受治疗的女性盆腔疼痛和排尿困难等症状明显减轻。Longo等[53]报道采用808、1 064和10 600 nm激光治疗阴茎硬结症取得较好效果。Dell’Atti等[16]则采用激光联合体外冲击波治疗阴茎硬结症, 联合治疗组较单纯体外冲击波治疗组症状改善更显著。

6 LLLT未来研究方向

LLLT可改善ED模型动物阴茎海绵体病理变化, 康复治疗ED的潜在效果与激活PI3K/Akt、MAPK/ERK等信号通路有关; LLLT改善新鲜及冻融精子的运动能力和顶体完整性效果与调节线粒体能量代谢重编程(如CCO介导的电子传递链激活)、氧化应激动态平衡(ROS/GSH-Px/SOD轴)及表观遗传修饰(DNA甲基化、组蛋白乙酰化)等有关。未来有待于开展融合生命科学、工程学与物理学的多学科深入研究, 以优化LLLT设备的物理参数;同时, 通过高质量的基础与临床研究, 促进其在相关疾病治疗中的转化应用。

利益冲突    所有作者均声明不存在利益冲突。

1
郭应禄, 辛钟成, 李辉喜, 等. 迎接生命科学第三次革命重视微能量医学发展[J]. 北京大学学报(医学版), 2015, 47 (4): 559- 565.

DOI

2
Glass GE . Photobiomodulation: A review of the molecular evidence for low level light therapy[J]. J Plast Reconstr Aesthet Surg, 2021, 74 (5): 1050- 1060.

3
Mansouri V , Arjmand B , Rezaei Tavirani M , et al. Evaluation of efficacy of low-level laser therapy[J]. J Lasers Med Sci, 2020, 11 (4): 369- 380.

4
da Fonseca EV , Bussadori SK , da Silva Martinho LFC , et al. Evaluation of photobiomodulation effects on pain, edema, paresthesia, and bone regeneration after surgically assisted rapid maxillary expansion: Study protocol for a randomized, controlled, and double blind clinical trial[J]. Medicine (Baltimore), 2019, 98 (48): e17756.

5
Garcia VJ , Arnabat J , Comesaña R , et al. Effect of low-level laser therapy after rapid maxillary expansion: A clinical investigation[J]. Lasers Med Sci, 2016, 31 (6): 1185- 1194.

6
Choung HW , Lee SH , Ham AR , et al. Effectiveness of low-level laser therapy with a 915 nm wavelength diode laser on the healing of intraoral mucosal wound: An animal study and a double-blind randomized clinical trial[J]. Medicina (Kaunas), 2019, 55 (8): 405.

7
Höfling DB , Chavantes MC , Juliano AG , et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: A randomized, placebo-controlled clinical trial[J]. Lasers Med Sci, 2013, 28 (3): 743- 753.

8
Frederice CP , de Mira TAA , Machado HC , et al. Effect of vaginal stretching and photobiomodulation therapy on sexual function in women with pelvic floor myofascial pain: A randomized clinical trial[J]. J Sex Med, 2022, 19 (1): 98- 105.

9
Mahmood D , Ahmad A , Sharif F , et al. Clinical application of low-level laser therapy (photo-biomodulation therapy) in the management of breast cancer-related lymphedema: A systematic review[J]. BMC Cancer, 2022, 22 (1): 937.

10
Xu Y , Cui L , Kong M , et al. Repeated low-level red light therapy for myopia control in high myopia children and adolescents: A randomized clinical trial[J]. Ophthalmology, 2024, 131 (11): 1314- 1323.

11
Anita L , Choi MJ , Yin GN , et al. Photobiomodulation as a potential therapy for erectile function: A preclinical study in a cavernous nerve injury model[J]. World J Mens Health, 2024, 42 (4): 842- 854.

12
Parvin A , Erabi G , Saboohi-Tasooji MR , et al. The effects of photobiomodulation on the improvement of sperm parameters: A review study[J]. Photochem Photobiol, 2024, 100 (6): 1713- 1739.

13
Frederice CP , Brito LGO , Machado HC , et al. Vaginal stretching therapy and class IIIB vaginal laser treatment for pelvic floor myofascial pain: A randomized clinical trial[J]. Lasers Med Sci, 2022, 37 (5): 2421- 2430.

14
Ruffolo AF , Braga A , Torella M , et al. Vaginal laser therapy for female stress urinary incontinence, new solutions for a well-known issue: A concise review[J]. Medicina (Kaunas), 2022, 58 (4): 512.

15
Butrick CW , Lamvu G . Transvaginal photobiomodulation improves pain in women with pelvic muscle tenderness and interstitial cystitis/bladder pain syndrome: A preliminary observational study[J]. Urology, 2022, 170, 14- 20.

DOI

16
Dell'Atti L , Ronchi P . Low-intensity laser diode plus extracorporeal shock wave therapy: A new treatment strategy in the management of Peyronie's disease[J]. World J Urol, 2023, 41 (9): 2563- 2568.

17
Mester E , Mester AF , Mester A . The biomedical effects of laser application[J]. Lasers Surg Med, 1985, 5 (1): 31- 39.

18
Huang YY , Sharma SK , Carroll J , et al. Biphasic dose response in low level light therapy: An update[J]. Dose Response, 2011, 9 (4): 602- 618.

19
Zein R , Selting W , Hamblin MR . Review of light parameters and photobiomodulation efficacy: Dive into complexity[J]. J Biomed Opt, 2018, 23 (12): 1- 17.

20
Khalaj S , Iranpour B , Hodjat M , et al. Photobiomodulation effects of pulsed and continuous wave near-infrared laser on the proliferation and migration of human gingival fibroblasts: An in vitro study[J]. Photochem Photobiol, 2024, 100 (1): 225- 232.

21
Selestin Raja I , Kim C , Oh N , et al. Tailoring photobiomodulation to enhance tissue regeneration[J]. Biomaterials, 2024, 309, 122623.

22
Chung H , Dai T , Sharma SK , et al. The nuts and bolts of low-level laser (light) therapy[J]. Ann Biomed Eng, 2012, 40 (2): 516- 533.

23
Wang Y , Huang YY , Wang Y , et al. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels[J]. Sci Rep, 2016, 6, 33719.

24
Zand N , Ataie-Fashtami L , Djavid GE , et al. Relieving pain in minor aphthous stomatitis by a single session of non-thermal carbon dioxide laser irradiation[J]. Lasers Med Sci, 2009, 24 (4): 515- 520.

25
Henderson TA , Morries LD . Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain?[J]. Neuropsychiatr Dis Treat, 2015, 11, 2191- 2208.

26
Karu T . Primary and secondary mechanisms of action of visible to near-IR radiation on cells[J]. J Photochem Photobiol B, 1999, 49 (1): 1- 17.

27
de Freitas LF , Hamblin MR . Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE J Sel Top Quantum Electron, 2016, 22 (3): 7000417.

28
Yang WZ , Chen JY , Yu JT , et al. Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells[J]. Photochem Photobiol, 2007, 83 (4): 979- 984.

29
Tatmatsu-Rocha JC , Ferraresi C , Hamblin MR , et al. Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin[J]. J Photochem Photobiol B, 2016, 164, 96- 102.

30
Lim W , Kim J , Kim S , et al. Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells[J]. Photochem Photobiol, 2013, 89 (1): 199- 207.

31
Agas D , Hanna R , Benedicenti S , et al. Photobiomodulation by near-infrared 980 nm wavelengths regulates pre-osteoblast proliferation and viability through the PI3K/Akt/Bcl-2 pathway[J]. Int J Mol Sci, 2021, 22 (14): 7586.

32
Ejiri K , Aoki A , Yamaguchi Y , et al. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells[J]. Lasers Med Sci, 2014, 29 (4): 1339- 1347.

33
Li Q , Chen Y , Dong S , et al. Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway[J]. Lasers Med Sci, 2017, 32 (7): 1489- 1496.

34
Saylan A , Firat T , Yis OM . Effects of photobiomodulation therapy on human sperm function[J]. Rev Int Androl, 2023, 21 (2): 100340.

35
Szymanska J , Goralczyk K , Klawe JJ , et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion[J]. J Physiol Pharmacol, 2013, 64 (3): 387- 391.

36
Yang L , Liu G , Jiang D , et al. Effect of near-infrared laser treatment on improving erectile function in rats with diabetes mellitus[J]. Andrology, 2023, 11 (7): 1472- 1483.

37
Hasani A , Khosravi A , Rahimi K , et al. Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice[J]. Life Sci, 2020, 254, 117767.

38
Soltani R , Abbaszadeh HA , Nazarian H , et al. The impact of photobiomodulation therapy on enhancing spermatogenesis and blood-testis barrier integrity in adult male mice subjected to scrotal hyperthermia[J]. J Lasers Med Sci, 2024, 15, e43.

39
Rezaei F , Bayat M , Nazarian H , et al. Photobiomodulation therapy improves spermatogenesis in busulfan-induced infertile mouse[J]. Reprod Sci, 2021, 28 (10): 2789- 2798.

40
Aghajanpour F , Abbaszadeh HA , Nazarian H , et al. Photobiomodulation improves histological parameters of testis and spermatogenesis in adult mice exposed to scrotal hyperthermia in the prepubertal phase[J]. J Lasers Med Sci, 2024, 15, e49.

41
Ziaeipour S , Norouzian M , Abbaszadeh HA , et al. Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model[J]. Lasers Med Sci, 2023, 38 (1): 114.

42
Dadras S , Abdollahifar MA , Nazarian H , et al. Photobiomodulation improved stereological parameters and sperm analysis factors in streptozotocin-induced type 1 diabetes mellitus[J]. J Photochem Photobiol B, 2018, 186, 81- 87.

43
Firestone RS , Esfandiari N , Moskovtsev SI , et al. The effects of low-level laser light exposure on sperm motion characteristics and DNA damage[J]. J Androl, 2012, 33 (3): 469- 473.

44
Ban-Frangez H , Frangez I , Verdenik I , et al. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia[J]. Lasers Med Sci, 2015, 30 (1): 235- 240.

45
Safian F , Ghaffari Novin M , Karimi M , et al. Photobiomodulation with 810 nm wavelengths improves human sperms' motility and viability in vitro[J]. Photobiomodul Photomed Laser Surg, 2020, 38 (4): 222- 231.

46
Espey BT , Kielwein K , van der Ven H , et al. Effects of pulsed-wave photobiomodulation therapy on human spermatozoa[J]. Lasers Surg Med, 2022, 54 (4): 540- 553.

47
Preece D , Chow KW , Gomez-Godinez V , et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage[J]. Sci Rep, 2017, 7, 46480.

48
Ömür AD . Evaluation of the effects of photostimulation on freeze-thawed bull sperm cells in terms of reproductive potential[J]. Pol J Vet Sci, 2022, 25 (2): 249- 259.

49
Safian F , Ghaffari Novin M , Nazarian H , et al. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation[J]. Cryobiology, 2021, 98, 239- 244.

50
Safian F , Bayat M , Jajarmi V , et al. Comparative Effect of photobiomodulation on human semen samples pre- and post-cryopreservation[J]. Reprod Sci, 2022, 29 (5): 1463- 1470.

51
Gabel CP , Carroll J , Harrison K . Sperm motility is enhanced by low level laser and light emitting diode photobiomodulation with a dose-dependent response and differential effects in fresh and frozen samples[J]. Laser Ther, 2018, 27 (2): 131- 136.

52
Ishibashi N , Uchiyama T , Tao S . Effect of photobiomodulation on lower urinary tract dysfunction in rat cystitis model[J]. PLoS One, 2024, 19 (7): e0306527.

53
Longo L , Longo D . Laser photobiomodulation of the induratio penis plastica or La peyronie's syndrome[J]. Photobiomodul Photomed Laser Surg, 2022, 40 (4): 287- 291.

文章导航

/