北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (4): 627-632. doi: 10.19723/j.issn.1671-167X.2025.04.001

• 专家笔谈 •    下一篇

低强度激光疗法治疗男性生殖与性功能障碍

牛远杰1, 辛钟成1,2,*(), 林桂亭3, 丁攀1, 潘建成1, 封玉宏1, 郭应禄2   

  1. 1. 天津医科大学第二医院泌尿外科男性生殖与性医学部, 天津市泌尿外科研究所, 天津 300211
    2. 北京大学第一医院泌尿外科, 北京 100034
    3. Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
  • 收稿日期:2025-04-18 出版日期:2025-08-18 发布日期:2025-08-02
  • 通讯作者: 辛钟成

Low-level laser therapy for the treatment of male infertility and erectile dysfunction

Yuanjie NIU1, Zhongcheng XIN1,2,*(), Guiting LIN3, Pan DING1, Jiancheng PAN1, Yuhong FENG1, Yinglu GUO2   

  1. 1. Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University; Tianjin Institute of Urology, Tianjin 300211, China
    2. Department of Urology, Peking University First Hospital, Beijing 100034, China
    3. Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
  • Received:2025-04-18 Online:2025-08-18 Published:2025-08-02
  • Contact: Zhongcheng XIN

RICH HTML

  

摘要:

低强度激光疗法(low-level laser therapy, LLLT)常用波长600~1 000 nm, 功率5~500 mW, 为红光或近红外光(near-infrared, NIR)。LLLT作为一种非侵入性治疗方式, 作用于细胞色素C氧化酶(cytochrome C oxidase, CCO)等靶点, 激活PI3K/Akt、MAPK/ERK等信号通路, 增强线粒体三磷酸腺苷(adenosine triphosphate, ATP)合成并调节氧化应激与炎症反应, 具有抗氧化、抗炎及促细胞修复功能, 在皮肤相关疾病、癌症和骨关节疾病等临床领域被广泛应用。近年来研究表明, LLLT可改善勃起功能障碍(erectile dysfunction, ED)模型动物阴茎海绵体病理变化, 康复治疗ED的潜在效果与激活PI3K/Akt、MAPK/ERK等信号通路相关。LLLT处理新鲜及冻融精子的研究发现, LLLT显著提升精子运动能力和顶体完整性效果与调节线粒体能量代谢重编程(如CCO介导的电子传递链激活)、氧化应激动态平衡(ROS/GSH-Px/SOD轴)及表观遗传修饰(DNA甲基化、组蛋白乙酰化)等有关; 在LLLT治疗阴囊热应激诱导的少精子症模型中, LLLT可显著促进生精上皮细胞分化, 其提升血清睾酮水平与抑制脂质过氧化、降低活性氧(reactive oxygen species, ROS)水平有关。这些研究结果提示, LLLT的光生物调节作用在男性生殖与性功能障碍的康复治疗中具有潜在效果。未来有待于开展融合生命科学、工程学与物理学的多学科研究, 以优化LLLT设备的物理参数; 同时, 通过高质量的基础与临床研究, 促进其在相关疾病治疗中的转化应用。

关键词: 低强度激光疗法, 光生物调节, 男性不育, 勃起功能障碍

Abstract:

Low-level laser therapy (LLLT), a noninvasive photobiomodulation technique, employs red or near-infrared (NIR) light (600-1 000 nm) with power outputs ranging from 5 to 500 mW. It exerts therapeutic effects through molecular mechanisms, specifically the activation of cytochrome C oxidase (CCO) and the modulation of intracellular signaling pathways. By enhancing mitochondrial adenosine triphosphate (ATP) synthesis, LLLT mitigates oxidative stress, regulates the reactive oxygen species (ROS)/glutathione peroxidase (GSH-Px)/superoxide dismutase (SOD) axis, and activates key pathways, including phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). These mechanisms confer antioxidant, anti-inflammatory, and pro-regenerative properties to LLLT, making it a viable intervention for dermatological conditions, oncological therapies, and musculoskeletal disorders. Recent preclinical studies underscore LLLT' s potential in male reproductive health. Specifically, it ameliorates cavernosal fibrosis and endothelial dysfunction in erectile dysfunction (ED) models by upregulating the PI3K/Akt and MAPK/ERK pathways. In the context of sperm biology, LLLT enhances motility and acrosomal integrity in both fresh and cryopreserved spermatozoa. This is achieved through mitochondrial metabolic reprogramming, such as CCO-mediated electron transport chain activation, redox homeostasis restoration, and epigenetic modulation involving DNA methylation and histone acetylation. Additionally, LLLT alleviates scrotal heat-induced oligospermia by promoting seminiferous epithelial differentiation, elevating serum testosterone levels, and suppressing lipid peroxidation. These findings highlight the translational potential of LLLT in regenerative medicine, particularly for male sexual and reproductive disorders. Future research efforts should focus on interdisciplinary collaborations spanning life sciences, engineering, and physics. The goal is to optimize laser parameters, including wavelength, irradiance, and treatment duration, and establish standardized protocols. Rigorous preclinical and clinical investigations are paramount to validate the safety, efficacy, and long-term outcomes of LLLT, ultimately paving the way for its integration into precision medicine frameworks for urological and reproductive therapies.

Key words: Low-level laser therapy, Photobiomodulation, Male infertility, Erectile dysfunction

中图分类号: 

  • R698

表1

不同波长低强度激光对细胞信号通路的调控机制"

Wavelength/nm Signaling pathway Biological effects Reference
904 Catalase Reduces ROS, promotes wound healing in diabetic mice [29]
635 NF-κB Reduces ROS, inhibits NF-κB, decreases PGE2, COX-1, and COX-2 expression, anti-inflammatory [30]
980 PI3K/Akt/Bcl-2 Regulates S-phase progression in osteoblasts [31]
910 MAPK/ERK Enhances cell migration and cytoskeletal remodeling [32]
808 Hedgehog (Ptch, Ihh, Smo, Gli) Promotes osteoblast proliferation [33]
650 NO/Ca2+/ROS Enhances sperm motility [34]
635 VEGF Reduces VEGF concentration, increases endothelial cell proliferation [35]
1
郭应禄, 辛钟成, 李辉喜, 等. 迎接生命科学第三次革命重视微能量医学发展[J]. 北京大学学报(医学版), 2015, 47 (4): 559- 565.

doi: 10.3969/j.issn.1671-167X.2015.04.001
2
Glass GE . Photobiomodulation: A review of the molecular evidence for low level light therapy[J]. J Plast Reconstr Aesthet Surg, 2021, 74 (5): 1050- 1060.
3
Mansouri V , Arjmand B , Rezaei Tavirani M , et al. Evaluation of efficacy of low-level laser therapy[J]. J Lasers Med Sci, 2020, 11 (4): 369- 380.
4
da Fonseca EV , Bussadori SK , da Silva Martinho LFC , et al. Evaluation of photobiomodulation effects on pain, edema, paresthesia, and bone regeneration after surgically assisted rapid maxillary expansion: Study protocol for a randomized, controlled, and double blind clinical trial[J]. Medicine (Baltimore), 2019, 98 (48): e17756.
5
Garcia VJ , Arnabat J , Comesaña R , et al. Effect of low-level laser therapy after rapid maxillary expansion: A clinical investigation[J]. Lasers Med Sci, 2016, 31 (6): 1185- 1194.
6
Choung HW , Lee SH , Ham AR , et al. Effectiveness of low-level laser therapy with a 915 nm wavelength diode laser on the healing of intraoral mucosal wound: An animal study and a double-blind randomized clinical trial[J]. Medicina (Kaunas), 2019, 55 (8): 405.
7
Höfling DB , Chavantes MC , Juliano AG , et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: A randomized, placebo-controlled clinical trial[J]. Lasers Med Sci, 2013, 28 (3): 743- 753.
8
Frederice CP , de Mira TAA , Machado HC , et al. Effect of vaginal stretching and photobiomodulation therapy on sexual function in women with pelvic floor myofascial pain: A randomized clinical trial[J]. J Sex Med, 2022, 19 (1): 98- 105.
9
Mahmood D , Ahmad A , Sharif F , et al. Clinical application of low-level laser therapy (photo-biomodulation therapy) in the management of breast cancer-related lymphedema: A systematic review[J]. BMC Cancer, 2022, 22 (1): 937.
10
Xu Y , Cui L , Kong M , et al. Repeated low-level red light therapy for myopia control in high myopia children and adolescents: A randomized clinical trial[J]. Ophthalmology, 2024, 131 (11): 1314- 1323.
11
Anita L , Choi MJ , Yin GN , et al. Photobiomodulation as a potential therapy for erectile function: A preclinical study in a cavernous nerve injury model[J]. World J Mens Health, 2024, 42 (4): 842- 854.
12
Parvin A , Erabi G , Saboohi-Tasooji MR , et al. The effects of photobiomodulation on the improvement of sperm parameters: A review study[J]. Photochem Photobiol, 2024, 100 (6): 1713- 1739.
13
Frederice CP , Brito LGO , Machado HC , et al. Vaginal stretching therapy and class IIIB vaginal laser treatment for pelvic floor myofascial pain: A randomized clinical trial[J]. Lasers Med Sci, 2022, 37 (5): 2421- 2430.
14
Ruffolo AF , Braga A , Torella M , et al. Vaginal laser therapy for female stress urinary incontinence, new solutions for a well-known issue: A concise review[J]. Medicina (Kaunas), 2022, 58 (4): 512.
15
Butrick CW , Lamvu G . Transvaginal photobiomodulation improves pain in women with pelvic muscle tenderness and interstitial cystitis/bladder pain syndrome: A preliminary observational study[J]. Urology, 2022, 170, 14- 20.

doi: 10.3877/cma.j.issn.1674-3253.2022.01.003
16
Dell'Atti L , Ronchi P . Low-intensity laser diode plus extracorporeal shock wave therapy: A new treatment strategy in the management of Peyronie's disease[J]. World J Urol, 2023, 41 (9): 2563- 2568.
17
Mester E , Mester AF , Mester A . The biomedical effects of laser application[J]. Lasers Surg Med, 1985, 5 (1): 31- 39.
18
Huang YY , Sharma SK , Carroll J , et al. Biphasic dose response in low level light therapy: An update[J]. Dose Response, 2011, 9 (4): 602- 618.
19
Zein R , Selting W , Hamblin MR . Review of light parameters and photobiomodulation efficacy: Dive into complexity[J]. J Biomed Opt, 2018, 23 (12): 1- 17.
20
Khalaj S , Iranpour B , Hodjat M , et al. Photobiomodulation effects of pulsed and continuous wave near-infrared laser on the proliferation and migration of human gingival fibroblasts: An in vitro study[J]. Photochem Photobiol, 2024, 100 (1): 225- 232.
21
Selestin Raja I , Kim C , Oh N , et al. Tailoring photobiomodulation to enhance tissue regeneration[J]. Biomaterials, 2024, 309, 122623.
22
Chung H , Dai T , Sharma SK , et al. The nuts and bolts of low-level laser (light) therapy[J]. Ann Biomed Eng, 2012, 40 (2): 516- 533.
23
Wang Y , Huang YY , Wang Y , et al. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels[J]. Sci Rep, 2016, 6, 33719.
24
Zand N , Ataie-Fashtami L , Djavid GE , et al. Relieving pain in minor aphthous stomatitis by a single session of non-thermal carbon dioxide laser irradiation[J]. Lasers Med Sci, 2009, 24 (4): 515- 520.
25
Henderson TA , Morries LD . Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain?[J]. Neuropsychiatr Dis Treat, 2015, 11, 2191- 2208.
26
Karu T . Primary and secondary mechanisms of action of visible to near-IR radiation on cells[J]. J Photochem Photobiol B, 1999, 49 (1): 1- 17.
27
de Freitas LF , Hamblin MR . Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE J Sel Top Quantum Electron, 2016, 22 (3): 7000417.
28
Yang WZ , Chen JY , Yu JT , et al. Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells[J]. Photochem Photobiol, 2007, 83 (4): 979- 984.
29
Tatmatsu-Rocha JC , Ferraresi C , Hamblin MR , et al. Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin[J]. J Photochem Photobiol B, 2016, 164, 96- 102.
30
Lim W , Kim J , Kim S , et al. Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells[J]. Photochem Photobiol, 2013, 89 (1): 199- 207.
31
Agas D , Hanna R , Benedicenti S , et al. Photobiomodulation by near-infrared 980 nm wavelengths regulates pre-osteoblast proliferation and viability through the PI3K/Akt/Bcl-2 pathway[J]. Int J Mol Sci, 2021, 22 (14): 7586.
32
Ejiri K , Aoki A , Yamaguchi Y , et al. High-frequency low-level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells[J]. Lasers Med Sci, 2014, 29 (4): 1339- 1347.
33
Li Q , Chen Y , Dong S , et al. Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway[J]. Lasers Med Sci, 2017, 32 (7): 1489- 1496.
34
Saylan A , Firat T , Yis OM . Effects of photobiomodulation therapy on human sperm function[J]. Rev Int Androl, 2023, 21 (2): 100340.
35
Szymanska J , Goralczyk K , Klawe JJ , et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion[J]. J Physiol Pharmacol, 2013, 64 (3): 387- 391.
36
Yang L , Liu G , Jiang D , et al. Effect of near-infrared laser treatment on improving erectile function in rats with diabetes mellitus[J]. Andrology, 2023, 11 (7): 1472- 1483.
37
Hasani A , Khosravi A , Rahimi K , et al. Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice[J]. Life Sci, 2020, 254, 117767.
38
Soltani R , Abbaszadeh HA , Nazarian H , et al. The impact of photobiomodulation therapy on enhancing spermatogenesis and blood-testis barrier integrity in adult male mice subjected to scrotal hyperthermia[J]. J Lasers Med Sci, 2024, 15, e43.
39
Rezaei F , Bayat M , Nazarian H , et al. Photobiomodulation therapy improves spermatogenesis in busulfan-induced infertile mouse[J]. Reprod Sci, 2021, 28 (10): 2789- 2798.
40
Aghajanpour F , Abbaszadeh HA , Nazarian H , et al. Photobiomodulation improves histological parameters of testis and spermatogenesis in adult mice exposed to scrotal hyperthermia in the prepubertal phase[J]. J Lasers Med Sci, 2024, 15, e49.
41
Ziaeipour S , Norouzian M , Abbaszadeh HA , et al. Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model[J]. Lasers Med Sci, 2023, 38 (1): 114.
42
Dadras S , Abdollahifar MA , Nazarian H , et al. Photobiomodulation improved stereological parameters and sperm analysis factors in streptozotocin-induced type 1 diabetes mellitus[J]. J Photochem Photobiol B, 2018, 186, 81- 87.
43
Firestone RS , Esfandiari N , Moskovtsev SI , et al. The effects of low-level laser light exposure on sperm motion characteristics and DNA damage[J]. J Androl, 2012, 33 (3): 469- 473.
44
Ban-Frangez H , Frangez I , Verdenik I , et al. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia[J]. Lasers Med Sci, 2015, 30 (1): 235- 240.
45
Safian F , Ghaffari Novin M , Karimi M , et al. Photobiomodulation with 810 nm wavelengths improves human sperms' motility and viability in vitro[J]. Photobiomodul Photomed Laser Surg, 2020, 38 (4): 222- 231.
46
Espey BT , Kielwein K , van der Ven H , et al. Effects of pulsed-wave photobiomodulation therapy on human spermatozoa[J]. Lasers Surg Med, 2022, 54 (4): 540- 553.
47
Preece D , Chow KW , Gomez-Godinez V , et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage[J]. Sci Rep, 2017, 7, 46480.
48
Ömür AD . Evaluation of the effects of photostimulation on freeze-thawed bull sperm cells in terms of reproductive potential[J]. Pol J Vet Sci, 2022, 25 (2): 249- 259.
49
Safian F , Ghaffari Novin M , Nazarian H , et al. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation[J]. Cryobiology, 2021, 98, 239- 244.
50
Safian F , Bayat M , Jajarmi V , et al. Comparative Effect of photobiomodulation on human semen samples pre- and post-cryopreservation[J]. Reprod Sci, 2022, 29 (5): 1463- 1470.
51
Gabel CP , Carroll J , Harrison K . Sperm motility is enhanced by low level laser and light emitting diode photobiomodulation with a dose-dependent response and differential effects in fresh and frozen samples[J]. Laser Ther, 2018, 27 (2): 131- 136.
52
Ishibashi N , Uchiyama T , Tao S . Effect of photobiomodulation on lower urinary tract dysfunction in rat cystitis model[J]. PLoS One, 2024, 19 (7): e0306527.
53
Longo L , Longo D . Laser photobiomodulation of the induratio penis plastica or La peyronie's syndrome[J]. Photobiomodul Photomed Laser Surg, 2022, 40 (4): 287- 291.
[1] 陈延,李况蒙,洪锴,张树栋,程建星,郑仲杰,唐文豪,赵连明,张海涛,姜辉,林浩成. 阴茎海绵体注射试验对阴茎血管功能影响的回顾性研究[J]. 北京大学学报(医学版), 2024, 56(4): 680-686.
[2] 张展奕,张帆,颜野,曹财广,李长剑,邓绍晖,孙悦皓,黄天亮,管允鹤,李楠,陆敏,胡振华,张树栋. 近红外荧光靶向探针用于前列腺神经血管束术中成像[J]. 北京大学学报(医学版), 2023, 55(5): 843-850.
[3] 蔡颖,万巧琴,蔡宪杰,高亚娟,韩鸿宾. 光生物调节加速脑组织间液引流及其机制[J]. 北京大学学报(医学版), 2022, 54(5): 1000-1005.
[4] 代晓微,徐影,郑连文,李凌云,李丹丹,谭鑫,高飞,王艳,吴桂杰. 1 324例少精子症和无精子症患者的染色体核型分析[J]. 北京大学学报(医学版), 2018, 50(5): 774-777.
[5] 杨竣, 王涛, 张岩, 徐华, 王少刚, 刘继红, 叶章群. 碱性成纤维细胞生长因子在老龄大鼠血清及阴茎海绵体中的含量[J]. 北京大学学报(医学版), 2015, 47(4): 582-585.
[6] 张凯, 贺利军, 虞巍,王弋, 白文俊, 王晓峰, 朱积川, 金杰, 那彦群 . 22~50岁中国人精神心理健康状况与下尿路症状及阴茎勃起功能障碍的相关性[J]. 北京大学学报(医学版), 2013, 45(4): 609-.
[7] 马潞林, 张帆. 腹腔镜前列腺癌根治术后勃起功能障碍的预防与治疗[J]. 北京大学学报(医学版), 2011, 43(4): 640-643.
[8] 金哲, 辛钟成 . 阴茎勃起功能障碍合并良性前列腺增生症相关下尿路症状的治疗[J]. 北京大学学报(医学版), 2011, 43(4): 632-635.
[9] 张志超, 袁亦铭, 彭靖, 高冰, 宋卫东, 辛钟成, 郭应禄, 金杰. 无性生活勃起功能障碍的临床特点[J]. 北京大学学报(医学版), 2011, 43(4): 582-585.
[10] 张海洋, 林桂亭, 辛钟成, Tom F. LUE. 干细胞治疗男性勃起功能障碍的进展与展望[J]. 北京大学学报(医学版), 2011, 43(4): 485-489.
[11] 李小鑫, 邱雪峰, 余文, 朱伟东, 陈赟, 戴玉田. 糖尿病大鼠阴茎海绵体线粒体氧化应激损伤与保护[J]. 北京大学学报(医学版), 2011, 43(2): 189-193.
[12] 金哲, 朱一辰, 崔万寿, 刘涛, 李维仁, 袁亦铭, 宋卫东, 辛钟成. 阴茎起勃器植入手术治疗重度勃起功能障碍的效果和患者满意度[J]. 北京大学学报(医学版), 2010, 42(4): 413-417.
[13] 朱郇荣*, 孙祥宙, 黄燕平, 张亚东, 刘贵华, 姚凤娟, 孙宇, 邓春华 . 勃起功能障碍与血管内皮功能相关性研究及其影响因素[J]. 北京大学学报(医学版), 2010, 42(4): 418-420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!