Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 16-23. doi: 10.19723/j.issn.1671-167X.2021.01.004

Previous Articles     Next Articles

Association between root abnormalities and related pathogenic genes in patients with generalized aggressive periodontitis

LIU Jian,WANG Xian-e,LV Da,QIAO Min,ZHANG Li,MENG Huan-xin(),XU Li(),MAO Ming-xin   

  1. Department of Periodontology,Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2020-09-29 Online:2021-02-18 Published:2021-02-07
  • Contact: Huan-xin MENG,Li XU E-mail:kqmeng@126.com;xulihome@263.net

Abstract:

Objective: To explore the association between the abnormal root morphology and bone metabolism or root development related gene polymorphism in patients with generalized aggressive periodontitis.Methods: In the study, 179 patients with generalized aggressive periodontitis were enrolled, with an average age of (27.23±5.19) years, male / female = 67/112. The average number of teeth remaining in the mouth was (26.80±1.84). Thirteen single nucleotide polymorphisms (SNPs) of nine genes which related to bone metabolism and root development were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Root abnormalities were identified using periapical radiographs. The abnormal root morphology included cone-rooted teeth,slender-root teeth,short-rooted teeth,curved-rooted teeth,syncretic-rooted molars,and molar root abnormalities. The number of teeth and incidence of abnormal root morphology in different genotypes of 13 SNPs were analyzed.Results: The constituent ratio of root with root abnormality in GAgP patients was 14.49%(695/4 798). The average number of teeth with abnormal root morphology in GAgP was (3.88±3.84). The average number of teeth with abnormal root morphology in CC, CT and TT genotypes in vitamin D receptor (VDR) rs2228570 was (4.66±4.10), (3.71±3.93) and (2.68±2.68). There was significant difference between TT genotype and CC genotype (t = 2.62, P =0.01). The average number of root morphological abnormalities in CC, CT and TT genotypes of Calcitotin Receptor (CTR) gene rs2283002 was (5.02±3.70),(3.43±3.95), and (3.05±3.12). The incidence of root morphological abnormalities in CC genotype was higher than that in the patients with CT and TT, and the difference was statistically significant(87.86% vs. 65.26% & 63.64%, P=0.006,adjusted OR =3.71,95%CI: 1.45-9.50). There was no significant difference in the incidence of abnormal root morphology between CT and TT genotypes.Conclusion: VDR rs2228570 and CTR rs2283002 may be associated with the occurrence of abnormal root morphology in patients with generalized aggressive periodontitis, which is worthy of further research.

Key words: Aggressive periodontitis, Root abnormality, Gene, Single nucleotide polymorphisms

CLC Number: 

  • R394.3

Table 1

13 SNPs from 9 candidate genes"

Gene SNPs
VDR rs2228570
CTR rs2283002, rs2374634
MMP-8 rs11225395
RANK rs11664594
DBP rs17467825, rs4588, rs7041
EGF rs2237051
BMP2 rs2273073
S100A8 rs3795391, rs3806232
Runx2/Cbfa1 rs6938177

Figure 1

Typical X-ray films of abnormal root morphology A, cone-rooted teeth of anterior; B, cone-rooted teeth of premolar; C, slender-root teeth; D, short-rooted teeth; E, curved-rooted teeth; F, syncretic-rooted molars; G, molar root abnormalities."

Table 2

Distribution of teeth with abnormal root morphology"

Item Teeth level, n (%)
Cone-rooted teeth of anterior 214 (31)
Cone-rooted teeth of premolar 160 (23)
Short-rooted teeth 106 (15)
Curved-rooted teeth 85 (12)
Slender-root teeth 53 (8)
Molar root abnormalities 39 (6)
Syncretic-rooted molars 37 (5)
Root abnormalities 695 (100)

Table 3

Different genotypes of 13 single nucleotide polymorphisms from 9 candidate genes and root morphology abnormalities in patients with GAgP"

SNPs Gene type GAgP, n(%) Cone-rooted teeth of anterior Teeth of root abnormalities
Median(P25, P75) P x-±s/Median(P25, P75) P
VDR rs2228570 CC 59 (33.91) 0 (0, 2) 4.66±4.10
CT 90 (51.72) 0 (0, 2) 0.02 3.71±3.93 0.01
TT 25 (14.37) 0 (0, 0) 2.68±2.68
CTR rs2283002 TT 22 (13.25) 0 (0, 1.25) 3.05±3.12
CT 95 (57.23) 0 (0, 2) 0.14 3.43±3.95 0.03
CC 49 (29.52) 0 (0, 2.50) 5.02±3.70
CTR rs2374634 TT 144 (83.72) 0 (0, 2) 3 (0, 6.75)
TC 25 (14.53) 0 (0, 1) 0.44 4 (0, 5) 0.75
CC 3 (1.74) 0 (0, 1) 6 (0, 7)
MMP-8 rs11225395 GG 73 (41.01) 0 (0, 2) 4.25±3.95
AG 88 (49.44) 0 (0, 1) 0.23 3.48±3.70 0.38
AA 17 (9.55) 0 (0, 3) 4.41±4.18
RANK rs11664594 TT 59 (34.30) 0 (0, 2) 4.17±4.26
AT 87 (50.58) 0 (0, 2) 0.80 4.18±3.80 0.21
AA 26 (15.12) 0 (0, 2) 2.73±2.86
DBP rs17467825 AA 77 (44.77) 0 (0, 2) 3.84±3.79
AG 73 (42.44) 0 (0, 2) 0.72 3.67±3.62 0.45
GG 22 (12.79) 0 (0, 2.50) 4.86±4.95
DBP rs4588 CC 76 (43.18) 0 (0, 2) 3 (0.25, 6)
CA 79 (44.89) 0 (0, 2) 0.51 4 (0, 6) 0.93
AA 21 (11.93) 0 (0, 3) 2 (0, 8.50)
DBP rs7041 TT 97 (55.43) 0 (0, 2) 3.84±3.60
GT 68 (38.86) 0 (0, 2) 0.39 3.99±4.23 0.75
GG 10 (5.71) 1.5 (0, 2.50) 4.80±3.82
EGF rs2237051 AA 73 (41.71) 0 (0, 1) 3.89±4.06
GA 90 (51.43) 0 (0, 2) 0.12 4.01±3.67 0.98
GG 12 (6.86) 0 (0, 2) 3.83±4.28
BMP2 rs2273073 TT 156 (90.17) 0 (0, 2) 0.81 3.96±3.83 0.97
GT 17 (9.83) 0 (0, 2) 4.00±4.26
GG - - - - -
S100A8 rs3795391 TT 136 (77.27) 0 (0, 2) 0.76 3.91±3.98 0.99
TC 40 (22.73) 0 (0, 2) 3.90±3.46
CC - - - - -
S100A8 rs3806232 TT 130 (73.03) 0 (0, 2) 0.41 3.79±4.00 0.63
CT 48 (26.97) 0 (0, 2) 4.10±3.47
CC - - - - -
Runx2/Cbfa1 CC 87 (49.71) 0 (0, 2) 3.44±3.73
rs6938177 TC 71 (40.57) 0 (0, 3) 0.01 4.65±4.03 0.041
TT 17 (9.71) 0 (0, 0.50) 2.47±2.62

Table 4

Incidence of root morphological abnormalities in different genotypes of 13 single nucleotide polymorphisms from 9 candidate genes"

SNPs Gene type Total Incidence of root abnormality
n(%) Adjusted OR(95%CI)
VDR rs2228570
CC 59 45 (76.27)
CT+TT 115 79 (68.70) 0.93 (0.56, 1.52)
CTR rs2283002
CC 49 43 (87.76) 3.71 (1.45, 9.50)*
CT+TT 117 76 (64.96)
CTR rs2374634
TT 144 105 (72.92)
TC+CC 28 19 (67.86) 1.28 (0.53, 3.06)
MMP-8 rs11225395
AA 17 12 (70.59)
GG+AG 161 115 (71.42) 1.04 (0.35, 3.12)
RANK rs11664594
TT 59 46 (77.93)
AT+AA 113 75 (66.37) 1.79 (0.87, 3.72)
DBP rs17467825
GG 22 16 (72.37)
AA+AG 150 107 (71.33) 0.93 (0.34, 2.54)
DBP rs4588
AA 21 15 (71.43)
CA+CC 155 79 (72.26) 1.04 (0.38, 2.86)
DBP rs7041
TT 97 73 (7526)
GT+GG 78 54 (69.23) 1.35 (0.69, 2.63)
EGF rs2237051
AA 73 48 (65.75)
GA+GG 102 79 (77.45) 0.56 (0.29, 1.09)
BMP2 rs2273073
TT 156 114 (73.08)
GT 17 12 (70.59) 1.13 (0.38, 3.40)
S100A8 rs3795391
TT 136 96 (70.59)
TC 40 30 (75.00) 0.80 (0.36, 1.79)
S100A8 rs3806232
TT 130 89 (68.46)
CT 48 38 (79.17) 0.57 (0.26, 1.26)
Runx2/Cbfa1 rs6938177 CC 87 60 (68.97)
TC+TT 88 79 (73.86) 0.79 (0.41, 1.52)

Figure 2

Periapical radiographs of a GAgP patient with VDR rs2228570 CC genotype Male, 21 years, VDR rs2228570 CC genotype;Cone-rooted teeth of anterior: 11, 21, 32, 31, 41, 42; Curved-rooted teeth: 12, 22; Molar root abnormalities: 36, 46."

[1] Stabholz A, Soskolne WA, Shapira L. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis[J]. Periodontology, 2010,53(1):138-153.
[2] Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis[J]. J Clin Periodontol, 2006,33(8):524-528.
doi: 10.1111/j.1600-051X.2006.00944.x pmid: 16899094
[3] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735
[4] McNamara CM, Garvey MT, Winter GB. Root abnormalities, talon cusps, dens invaginati with reduced alveolar bone levels: case report[J]. Int J Paediatr Dent, 1998,8(1):41-45.
doi: 10.1046/j.1365-263x.1998.00060.x pmid: 9558545
[5] 梁鑫. 人类牙根发育异常疾病概述[J]. 中华口腔医学杂志, 2019,54(11):783-787.
[6] 徐莉, 孟焕新, 田雨, 等. 侵袭性牙周炎患者牙根形态异常的观察[J]. 中华口腔医学杂志, 2009,44(5):266-269.
[7] 乔敏, 徐莉, 孟焕新, 等. 侵袭性牙周炎核心家系牙槽骨吸收和牙根形态的遗传度分析[J]. 中华口腔医学杂志, 2013,48(10):577-580.
[8] 孟焕新, 曹采方, 和璐, 等. 临床牙周病学[M].2版. 北京: 北京大学医学出版社, 2014: 95-99.
[9] Puthiyaveetil JSV, Kota K, Chakkarayan R, et al. Epithelial mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review[J]. J Clin Diagn Res, 2016,10(9):5-9.
[10] Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development[J]. Int J Oral Sci, 2012,4(4):177-181.
doi: 10.1038/ijos.2012.61 pmid: 23222990
[11] Li JY, Parada G, Yang G. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017,144(3):374-384.
doi: 10.1242/dev.137216 pmid: 28143844
[12] Jia SH, Edward KHJ, Lan Y, et al. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists[J]. Developmental Biology, 2016,420(1):110-119.
pmid: 27713059
[13] Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4[J]. Development, 1996,122(1):121-129.
pmid: 8565823
[14] Guo T, Cao G, Liu BY, et al. Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation[J]. Int J Biochem Cell Biol, 2019,115(10):78-89.
[15] Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal[J]. Curr Top Dev Biol, 2015,115:157-186.
doi: 10.1016/bs.ctdb.2015.07.006 pmid: 26589925
[16] Hanna AE, Sanjad S, Andary R, et al. Tooth development associated with mutations in hereditary vitamin D-resistant rickets[J]. Clin Trans Res, 2018,3(1):28-34.
[17] Mallek HM, Nakamoto T, Nuchtern E, et al. The effect of calcitonin in vitro on tooth germs in protein-energy malnourished rats[J]. J Dent Res, 1979,58(9):1921-1925.
doi: 10.1177/00220345790580091901 pmid: 114562
[18] Sakakura Y, Iida S, Ishizeki K, et al. Ultrastructure of the effects of calcitonin on the development of mouse tooth germs in vitro[J]. Arch Oral Biol, 1984,29(7):507-512.
doi: 10.1016/0003-9969(84)90071-2 pmid: 6591883
[19] 张瑞, 黄晓峰, 张方明, 等. Nfic在牙根发育中作用的研究[J]. 北京口腔医学, 2013,21(3):121-124.
[20] Steele-Perkins G, Butz KG, Lyons GE, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development.[J]. Mol Cell Biol, 2003,23(3):1075-1084.
doi: 10.1128/mcb.23.3.1075-1084.2003 pmid: 12529411
[21] Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts[J]. Bone, 2018,114:161-171.
doi: 10.1016/j.bone.2017.12.026 pmid: 29292230
[22] Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth[J]. Int J Biol Sci, 2013,9(3):228-236.
doi: 10.7150/ijbs.5476 pmid: 23494738
[23] Chen HM, Guo SY, Xia Y, et al. The role of Rho-GEF Trio in regulating tooth root development through the p38 MAPK pathway[J]. Exp Cell Res, 2018,372(2):158-167.
pmid: 30268758
[24] 张宇凝, 王骏周, 陈晨. 牙根发育调控机制的研究进展[J]. 中华口腔医学杂志, 2020,55(8):591-594.
[25] LV D, Meng HX, Xu L, et al. Root abnormalities and nonsurgical management of generalized, aggressive periodontitis[J]. J Oral Sci, 2017,59(1):1-8.
doi: 10.2334/josnusd.16-0027 pmid: 27725369
[26] 田雨, 徐莉, 孟焕新, 等. 单根牙牙根表面积的测量与估算[J]. 北京大学学报(医学版), 2009,44(1):32-35.
[27] Berdal A, Hotton D, Pike JW, et al. Cell- and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: regulation by 1,25-dihydroxyvitamin D3[J]. Dev Biol, 1993,155(1):172-179.
doi: 10.1006/dbio.1993.1016 pmid: 8380146
[28] Papagerakis P. Differential epithelial and mesenchymal regulation of tooth-specific matrix protein sexpression by 1, 25-dihydroxyvitamin D3 in vivo[J]. Connect Tissue Res, 2002,43(2/3):372-375.
[29] Onishi T. Relationship of vitamin D with calbindin D9k and D28k expression in ameloblasts.[J]. Arch Oral Biol, 2008,53(2):117-123.
doi: 10.1016/j.archoralbio.2007.09.009 pmid: 17981260
[30] Bailleul-Forestier I, Davideau JL, Papagerakis P, et al. Immunolocalization of vitamin D receptor and calbindin-D28k in human tooth germ[J]. Pediatr Res, 1996,39(4):636-642.
[31] Botelho J, Machado V, Proença L, et al. Vitamin D deficiency and oral health: a comprehensive review[J]. Nutrients, 2020,12(5):1471-1487.
[32] 李媛媛, 崔凌凌, 李鑫, 等. 中国汉族男性原发性痛风与维生素D受体基因rs2228570多态性的遗传易感性研究[J]. 中华内分泌代谢杂志, 2015,31(4):316-319.
[33] Gross C, Eccleshall TR, Malloy PJ, et al. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women[J]. J Bone Miner Res, 1996,11(12):1850-1855.
doi: 10.1002/jbmr.5650111204 pmid: 8970885
[34] Gross C, Krishnan AV, Malloy PJ, et al. The vitamin D receptor gene start codon polymorphism: A functional analysis of FokI variants[J]. J Bone Miner Res, 1998,13(11):1691-1699.
doi: 10.1359/jbmr.1998.13.11.1691 pmid: 9797477
[35] Egan JB, Thompson PA, Vitanov MV, et al. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells[J]. Mol Carcinogen, 2010,49(4):337-352.
[36] Alimirah F, Peng XJ, Murillo G, et al. Functional significance of vitamin D receptor FokI polymorphismin human breast cancer cells[J]. PLoS One, 2011,6(1):e16024.
doi: 10.1371/journal.pone.0016024 pmid: 21283672
[37] Liu K, Han B, Meng HX, et al. Influence of rs2228570 on transcriptional activation by the vitamin D receptor in human gingival fibroblasts and periodontal ligament cells[J]. J Clin Periodontol, 2017,88(9):1-19.
[38] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735
[39] Xiong DH, Shen H, Zhao LJ, et al. Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction[J]. J Bone Miner Res, 2006,21(11):1678-1695.
doi: 10.1359/jbmr.060808 pmid: 17002564
[40] Lawrence AW, Mary EF, Zheng YX, et al. In vitro characterization of a human calcitonin receptor gene polymorphism[J]. Mutat Res Fund Mol M, 2003,522(1/2):93-105.
doi: 10.1016/S0027-5107(02)00282-8
[41] Giroux S, Elfassihi L, Clément V, et al. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density[J]. Bone, 2010,47(5):975-981.
doi: 10.1016/j.bone.2010.06.030
[42] Yanovich R, Friedman E, Milgrom R, et al. Candidate gene ana-lysis in israeli soldiers with stress fractures[J]. J Sports Sci Med, 2012,11(1):147-155.
pmid: 24149131
[1] ZHU Xiao-ling,LI Wen-jing,WANG Xian-e,SONG Wen-li,XU Li,ZHANG Li,FENG Xiang-hui,LU Rui-fang,SHI Dong,MENG Huan-xin. Gene polymorphisms of cytochrome B-245 alpha chain (CYBA) and cholesteryl ester transfer protein (CETP) and susceptibility to generalized aggressive periodontitis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 18-22.
[2] Dong-liang MU,Cheng XUE,Bin AN,Dong-xin WANG. Epidural block associated with improved long-term survival after surgery for colorectal cancer: A retrospective cohort study with propensity score matching [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1152-1158.
[3] Wen-yu DU,Jing-wen YANG,Ting JIANG. Early constant observation of the effect of deferoxamine mesylate on improvement of vascularized bone regeneration in SD rat skull critical size defect model [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1171-1177.
[4] Mei-ge LIU,Pu FANG,Yan WANG,Lu CONG,Yang-yi FAN,Yuan YUAN,Yan XU,Jun ZHANG,Dao-jun HONG. Clinical, pathological and genetic characteristics of 8 patients with distal hereditary motor neuropathy [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 957-963.
[5] Hong MENG,Li-na JI,Jing HUANG,Shuang CHAO,Jia-wen ZHOU,Xue-jun LI,Xiao-mei YIN,Li-rong FAN. Analysis of the changes and characteristics of pediatric outpatient visits in a general hospital in Beijing before and after the COVID-19 pandemic [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 952-956.
[6] Mei-xiang ZHANG,Wen-zhi SHI,Jian-xin LIU,Chun-jian WANG,Yan LI,Wei WANG,Bin JIANG. Clinical characteristics and prognosis of MLL-AF6 positive patients with acute myeloid leukemia [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 915-920.
[7] YOU Peng-yue,LIU Yu-hua,WANG Xin-zhi,WANG Si-wen,TANG Lin. Biocompatibility and effect on bone formation of a native acellular porcine pericardium: Results of in vitro and in vivo [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 776-784.
[8] FENG Ke,NI Jing-jing,XIA Yan-qing,QU Xiao-wei,ZHANG Hui-juan,WAN Feng,HONG Kai,ZHANG Cui-lian,GUO Hai-bin. Genetic analysis of three cases of acephalic spermatozoa syndrome caused by SUN5 mutation and the outcome of assisted reproductive technology [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 803-807.
[9] GUO Zi-ning, LIANG Zhi-sheng, ZHOU Yi, ZHANG Na, HUANG Jie. Genetic study of cardiovascular disease subtypes defined by International Classification of Diseases [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 453-459.
[10] ZHOU Chuan, MA Xue, XING Yun-kun, LI Lu-di, CHEN Jie, YAO Bi-yun, FU Juan-ling, ZHAO Peng. Exploratory screening of potential pan-cancer biomarkers based on The Cancer Genome Atlas database [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 602-607.
[11] ZHAO Kai,CHANG Zhi-fang,WANG Zhi-hua,PANG Chun-yan,WANG Yong-fu. Therapeutic effect of gene silencing peptidyl arginine deaminase 4 on pulmonary interstitial lesions induced by collagen-induced arthritis mice [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 235-239.
[12] HUANG Li-dong,GONG Wei-yu,DONG Yan-mei. Effects of bioactive glass on proliferation, differentiation and angiogenesis of human umbilical vein endothelial cells [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 371-377.
[13] WANG Si-wen,YOU Peng-yue,LIU Yu-hua,WANG Xin-zhi,TANG Lin,WANG Mei. Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 364-370.
[14] WANG Jing-qi,WANG Xiao. In vivo study of strontium-doped calcium phosphate cement for biological properties [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 378-383.
[15] ZHAO Jian-fang,LI Dong,AN Yang. Roles of ten eleven translocation proteins family and 5-hydroxymethylcytosine in epigenetic regulation of stem cells and regenerative medicine [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 420-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .