Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 167-174. doi: 10.19723/j.issn.1671-167X.2021.01.025

Previous Articles     Next Articles

Risk factors of recurrent kyphosis in thoracolumbar burst fracture patients treated by short segmental pedicle screw fixation

HOU Guo-jin,ZHOU Fang(),TIAN Yun,JI Hong-quan,ZHANG Zhi-shan,GUO Yan,LV Yang,YANG Zhong-wei,ZHANG Ya-wen   

  1. Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing 100191, China
  • Received:2020-03-31 Online:2021-02-18 Published:2021-02-07
  • Contact: Fang ZHOU E-mail:zhouf@bjmu.edu.cn
  • Supported by:
    Key Clinical Projects of Peking University Third Hospital(BYSY2017014)

RICH HTML

  

Abstract:

Objective: To analyze the risk factors of recurrent kyphosis after removal of short segmental pedicle screw fixation in patients with thoracolumbar burst fractures.Methods: Retrospective analysis was conducted of 144 cases of thoracolumbar burst fractures without neurological impairment treated in Peking University Third Hospital from January 2010 to December 2017. There were 74 males and 70 females, with an average age of (39.1±13.2) years. The distribution of the injured vertebrae was T12: 42, L1: 72 and L2: 30, with fracture types of A3: 90, B1: 25 and B2: 29. The patients were divided into two groups: Recurrent kyphosis group (n=92) and non-recurrent kyphosis group (n=52). SPSS 26.0 software was used for univariate analysis and Logistic regression analysis.Results: The average follow-up time was 28 (20-113) months. The imaging indexes of pre-operation, 3 days post-operation, 12 months post-operation and the last follow-up were measured and compared. Anterior vertebral body height, segmental kyphosis, vertebral wadge angle and Gardner deformity were significantly improved after operation (P<0.05), and there were some degrees of loss in the 1-year follow-up; anterior vertebral body height and vertebral wadge angle were no longer changed after the removal of the screws; however, segmental kyphosis and Gardner deformity were still aggravated after the removal of the screws (P<0.05). There were some degrees of collapse of the height of the upper and lower discs during the follow-up. Univariate analysis showed that there were statistically significant differences (P<0.05) between the two groups in gender, age (36.9 years vs. 43.0 years), upper disc injury, CT value (174 vs. 160), segmental kyphosis (16.6° vs. 13.3°), vertebral wadge angle (16.7° vs. 13.6°), Gardner deformity (19.1° vs. 15.2°) and ratio of anterior vertebral body height (0.65 vs. 0.71). Logistic regression analysis showed that male (OR: 2.88, 95%CI: 1.196-6.933), upper disc injury (OR: 2.962, 95%CI: 1.062-8.258) and injured vertebral wedge angle were risk factors of recurrent kyphosis after removal of internal fixation for thoracolumbar burst fracture (P<0.05).Conclusion: The patients with thoracolumbar burst fracture can obtain satisfactory effect immediately after posterior short segmental pedicle screw fixation, however, there may be some degree of loss during the follow-up. Male, upper disc injury and injured vertebral wedge angle are the risk factors of recurrent kyphosis after removal of internal fixation for thoracolumbar burst fracture.

Key words: Spinal fracture, Fracture fixation, internal, Pedicle screws, Kyphosis, Risk factors

CLC Number: 

  • R683.2

Figure 1

Measurement index of lateral X-ray A, measurement of the height of the anterior/posterior border of vertebral body; B, ∠α, segmental kyphosis; C, ∠γ, vertebral wedge angle; D, ∠β, Gardner deformity."

Table 1

Load-sharing classification of thoracolumbar fracture"

Items Load-sharing classification
1 2 3
Comminution (by CT) <30% 30%-60% >60%
Apposition of fragments (by CT) <1 mm ≥2 mm, displacement of
<50% cross section of body
>2 mm, displacement of
>50% cross section of body
Reducibility of sagittal deformation (by X-ray) <4° 4°-9° >9°

Table 2

Measurement of each index in different periods (x-±s)"

Variables Pre-operation 3 d after operation 12 months after operation Last follow-up
Ratio of anterior height 0.67±0.11 0.93±0.09 0.90±0.09 0.89±0.08
Ratio of posterior height 0.89±0.08 0.97±0.04 0.96±0.05 0.94±0.12
Ratio of discs height 0.89±0.13 0.90±0.13 0.86±0.10 0.82±0.15
Segmental kyphosis/(°) 15.4±7.3 6.7±6.9 9.5±7.7 13.4±8.6
Vertebral wage angle/(°) 15.6±4.7 7.2±3.5 8.4±3.7 8.7±3.5
Gardner deformity/(°) 17.7±6.2 8.7±4.7 11.5±5.7 13.8±5.6
Upper intervertebral angle/(°) -2.5±2.9 -4.2±2.9 -2.5±2.9 0.1±3.1
Lower intervertebral angle/(°) -5.9±2.4 -5.5±2.6 -5.0±2.0 -3.9±2.4

Table 3

General data comparison of recurrent kyphosis and non-recurrent kyphosis groups"

Variables Non-recurrent kyphosis (n=52) Recurrent kyphosis (n=92) Statistics P value
Gender (Male/Female) 18/34 56/36 χ2=9.167 0.002
Age/years 43.0±13.1 36.9±12.7 t=2.764 0.006
Body mass index 24.1±3.4 23.9±3.5 t=0.397 0.692
Location (T12/L1/L2) 12/30/10 30/42/20 χ2=2.098 0.350
Type of fracture (A3/B1/B2) 36/8/8 54/17/21 χ2=1.687 0.430
Disc injury (No/Uncertain/Yes) 16/16/20 16/10/66 χ2=16.122 <0.001
PLC injury (No/Yes) 36/16 54/38 χ2=1.573 0.210
Load-sharing classification 5.5(4.0-7.0) 6.0(4.0-8.0) Z=1.699 0.089
CT value 160.7±40.6 174.4±35.2 t=-2.031 0.045
SK pre-operation/(°) 13.3±7.6 16.6±6.9 t=-2.611 0.010
VWA pre-operation/(°) 13.6±4.7 16.7±4.4 t=-4.080 <0.001
Gardner deformity pre-operation/(°) 15.2±5.8 19.1±6.0 t=-3.800 <0.001
UIVA pre-operation/(°) -2.8±2.3 -2.4±3.3 t=-0.789 0.431
LIVA pre-operation/(°) -5.9±2.4 -5.9±2.5 t=-0.021 0.983
A% pre-operation 0.71±0.13 0.65±0.09 t=2.520 0.014
P% pre-operation 0.91±0.08 0.89±0.08 t=1.529 0.128
Ratio of upper/lower discs height 0.91±0.13 0.89±0.13 t=0.702 0.484
Vertebral height restoration/% 0.24±0.14 0.27±0.10 t=-1.402 0.163

Table 4

Logistic regression analysis of risk factors for recurrent kyphosis"

Variables Regression coefficient SE Wald χ2 P OR 95%CI
Gender (Male/Female) 1.058 0.448 5.565 0.018 2.880 1.196-6.933
Upper disc injury (No/Uncertain/Yes) 24.789 <0.001
Uncertain vs. No -2.437 0.767 10.100 0.001 0.087 0.019-0.393
Yes vs. No 1.086 0.523 4.309 0.038 2.962 1.062-8.258
VWA pre-operation 0.283 0.063 19.874 <0.001 1.327 1.172-1.503
Constant -4.321 0.984 19.281 <0.001 0.013

Figure 2

Typical case 1 (Male, 54 years old, T12 burst fracture) A, lateral X-ray before surgery; B, MRI before surgery showed upper intervertebral disc injury; C, lateral X-ray 3 days after surgery; D, lose of correction angle 12 months after surgery (X-ray); E, disc collapse and recurrent kyphosis 24 months after surgery (X-ray)."

Figure 3

Typical case 2 (Female, 53 years old, T12 burst fracture) A, lateral X-ray before surgery; B, MRI before surgery showed PLC injury; C, lateral X-ray 3 days after surgery; D, no lose of correction angle 12 months after surgery (X-ray); E, no recurrent kyphosis 24 months after surgery X-ray."

[1] Wood KB, Bohn D, Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: A prospective, randomized study[J]. J Spinal Disord Tech, 2005,18:S15-S23.
doi: 10.1097/01.bsd.0000132287.65702.8a pmid: 15699801
[2] Rajasekaran S, Kanna RM, Shetty AP. Management of thoracolumbar spine trauma: An overview[J]. Indian J Orthop, 2015,49(1):72-82.
doi: 10.4103/0019-5413.143914 pmid: 25593358
[3] 伍骥, 郑超, 黄蓉蓉. 重新认识胸腰段脊柱骨折的诊断和治疗[J]. 中国骨与关节杂志, 2016,5(6):401-404.
[4] Pellise F, Barastegui D, Hernandez-Fernandez A, et al. Viability and long-term survival of short-segment posterior fixation in thoracolumbar burst fractures[J]. Spine J, 2015,15(8):1796-1803.
doi: 10.1016/j.spinee.2014.03.012 pmid: 24642054
[5] Lee MC, Solomito M, Patel A. Supine magnetic resonance imaging Cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs[J]. Spine(Phila Pa 1976), 2013,38(11):E656-E661.
doi: 10.1097/BRS.0b013e31828d255d
[6] Wang XY, Dai LY, Xu HZ, et al. Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures[J]. J Neurosurg Spine, 2008,8(3):246-254.
doi: 10.3171/SPI/2008/8/3/246 pmid: 18312076
[7] Zou D, Li WS, Deng C, et al. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases[J]. Eur Spine J, 2019,28(8):1758-1766.
doi: 10.1007/s00586-018-5776-9 pmid: 30306332
[8] Sander AL, Laurer H, Lehnert T, et al. A clinically useful classification of traumatic intervertebral disk lesions[J]. AJR Am J Roentgenol, 2013,200(3):618-623.
doi: 10.2214/AJR.12.8748 pmid: 23436852
[9] McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures[J]. Spine, 1994,19(15):1741-1744.
doi: 10.1097/00007632-199408000-00014 pmid: 7973969
[10] Roy-Camille R, Saillant G, Mazel C. Plating of thoracic, thoracolumbar, and lumbar injuries with pedicle screw plates[J]. Orthop Clin North Am, 1986,17(1):147-159.
pmid: 3945476
[11] Cho DY, Lee WY, Sheu PC. Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation[J]. Neurosurgery, 2003,53(6):1354-1361.
doi: 10.1227/01.neu.0000093200.74828.2f pmid: 14633301
[12] Kim JY, Ryu DS, Paik HK, et al. Paraspinal muscle, facet joint, and disc problems: Risk factors for adjacent segment degeneration after lumbar fusion[J]. Spine J, 2016,16(7):867-875.
doi: 10.1016/j.spinee.2016.03.010 pmid: 26970600
[13] Furderer S, Wenda K, Thiem N, et al. Traumatic intervertebral disc lesion: Magnetic resonance imaging as a criterion for or against intervertebral fusion[J]. Eur Spine J, 2001,10(2):154-163.
doi: 10.1007/s005860000238 pmid: 11345638
[14] Dai LY, Jiang LS, Jiang SD. Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures: A five to seven years prospective randomized study[J]. J Bone Joint Surg Am, 2009,91(5):1033-1041.
doi: 10.2106/JBJS.H.00510 pmid: 19411450
[15] Kerttula LI, Serlo WS, Tervonen OA, et al. Post-traumatic findings of the spine after earlier vertebral fracture in young patients: clinical and MRI study[J]. Spine, 2000,25(9):1104-1108.
doi: 10.1097/00007632-200005010-00011 pmid: 10788855
[16] Chen JX, Xu DL, Sheng SR, et al. Risk factors of kyphosis recurrence after implant removal in thoracolumbar burst fractures following posterior short-segment fixation[J]. Int Orthop, 2016,40(6):1253-1260.
doi: 10.1007/s00264-016-3180-9 pmid: 27116190
[17] Alanay A, Acaroglu E, Yazici M, et al. Short-segment pedicle instrumentation of thoracolumbar burst fractures: does transpedicular intracorporeal grafting prevent early failure?[J]. Spine, 2001,26(2):213-217.
doi: 10.1097/00007632-200101150-00017 pmid: 11154543
[18] Jun DS, Shin WJ, An BK, et al. The relationship between the progression of kyphosis in stable thoracolumbar fractures and magnetic resonance imaging findings[J]. Asian Spine J, 2015,9(2):170-177.
doi: 10.4184/asj.2015.9.2.170 pmid: 25901226
[19] Mahar A, Kim C, Wedemeyer M, et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture[J]. Spine, 2007,32(14):1503-1507.
doi: 10.1097/BRS.0b013e318067dd24 pmid: 17572619
[20] 魏富鑫, 刘少喻, 赵卫东, 等. 胸腰椎爆裂性骨折伤椎固定的生物力学研究[J]. 中华创伤骨科杂志, 2006,8(9):857-860.
[21] Li K, Zhang W, Liu D, et al. Pedicle screw fixation combined with intermediate screw at the fracture level for treatment of thoracolumbar fractures: A meta-analysis[J]. Medicine (Baltimore), 2016,95(33):e4574.
doi: 10.1097/MD.0000000000004574
[22] Rajasekaran S, Maheswaran A, Aiyer SN, et al. Prediction of posterior ligamentous complex injury in thoracolumbar fractures using non-MRI imaging techniques[J]. Int Orthop, 2016,40(6):1075-1081.
doi: 10.1007/s00264-016-3151-1 pmid: 26983409
[23] 唐一村, 林本丹, 林慰光, 等. X线片和CT影像对胸腰椎后方韧带复合体损伤的诊断意义[J]. 中国脊柱脊髓杂志, 2016,26(9):801-806.
[24] Machino M, Yukawa Y, Ito K, et al. Posterior ligamentous complex injuries are related to fracture severity and neurological damage in patients with acute thoracic and lumbar burst fractures[J]. Yonsei Med J, 2013,54(4):1020-1025.
doi: 10.3349/ymj.2013.54.4.1020 pmid: 23709440
[25] McLain RF. The biomechanics of long versus short fixation for thoracolumbar spine fractures[J]. Spine(Phila Pa 1976), 2006,31(11 Suppl):S70-S79.
doi: 10.1097/01.brs.0000218221.47230.dd
[26] 张阳, 张志成, 李放, 等. 后方韧带复合体损伤在胸腰段骨折患者评估中的意义[J]. 中国骨与关节杂志, 2016,5(6):425-428.
[27] 张亚军, 方礼明, 张军, 等. 经椎旁肌间隙短节段椎弓根钉固定治疗伴后方韧带复合体损伤的胸腰椎骨折[J]. 中华创伤骨科杂志, 2013,15(12):1049-1053.
[28] 何海潮, 吕晓强, 张永进. 短节段经皮微创与传统椎弓根螺钉内固定治疗伴后方韧带复合体损伤的胸腰椎骨折的比较[J]. 中国骨伤, 2016,29(4):329-334.
doi: 10.3969/j.issn.1003-0034.2016.04.009
[29] Parker JW, Lane JR, Karaikovic EE, et al. Successful shortsegment instrumentation and fusion for thoracolumbar spine fractures: A consecutive 41/ 2-year series[J]. Spine, 2000,25(9):1157-1170.
doi: 10.1097/00007632-200005010-00018 pmid: 10788862
[30] Rihn JA, Anderson DT, Harris E, et al. A review of the TLICS system: A novel, user-friendly thoracolumbar trauma classification system[J]. Acta Orthop, 2008,79(4):461-466.
doi: 10.1080/17453670710015436 pmid: 18766477
[31] Kaul R, Chhabra HS, Vaccaro AR, et al. Reliability assessment of AOSpine thoracolumbar spine injury classification system and thoracolumbar injury classification and severity score (TLICS) for thoracolumbar spine injuries: results of a multicentre study[J]. Eur Spine J, 2017,26(5):1470-1476.
doi: 10.1007/s00586-016-4663-5 pmid: 27334493
[1] Qiwei WANG, Pengyu BAO, Shihao HONG, Xin YANG, Yu WANG, Yongping CAO. Therapeutic effect of modified femoral neck osteotomy on the surgical treatment of ankylosing spondylitis with severe flexion deformity [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 884-889.
[2] Zhicun LI, Tianyu WU, Lei LIANG, Yu FAN, Yisen MENG, Qian ZHANG. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 896-901.
[3] Ye YAN,Xiaolong LI,Haizhui XIA,Xuehua ZHU,Yuting ZHANG,Fan ZHANG,Ke LIU,Cheng LIU,Lulin MA. Analysis of risk factors for long-term overactive bladder after radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 589-593.
[4] Yan CHEN,Kuangmeng LI,Kai HONG,Shudong ZHANG,Jianxing CHENG,Zhongjie ZHENG,Wenhao TANG,Lianming ZHAO,Haitao ZHANG,Hui JIANG,Haocheng LIN. Retrospective study on the impact of penile corpus cavernosum injection test on penile vascular function [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 680-686.
[5] Bo PANG,Tongjun GUO,Xi CHEN,Huaqi GUO,Jiazhang SHI,Juan CHEN,Xinmei WANG,Yaoyan LI,Anqi SHAN,Hengyi YU,Jing HUANG,Naijun TANG,Yan WANG,Xinbiao GUO,Guoxing LI,Shaowei WU. Personal nitrogen oxides exposure levels and related influencing factors in adults over 35 years old in Tianjin and Shanghai [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 700-707.
[6] Jing HE,Zhongze FANG,Ying YANG,Jing LIU,Wenyao MA,Yong HUO,Wei GAO,Yangfeng WU,Gaoqiang XIE. Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 722-728.
[7] Shan CAI,Yihang ZHANG,Ziyue CHEN,Yunfe LIU,Jiajia DANG,Di SHI,Jiaxin LI,Tianyu HUANG,Jun MA,Yi SONG. Status and pathways of factors influencing physical activity time among elementary and junior high school students in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 403-410.
[8] Zuhong ZHANG,Tianjiao CHEN,Jun MA. Associations between puberty timing and cardiovascular metabolic risk factors among primary and secondary students [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 418-423.
[9] Yuting LIN,Huali WANG,Yu TIAN,Litong GONG,Chun CHANG. Factors influencing cognitive function among the older adults in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 456-461.
[10] Jinrong ZHU,Yana ZHAO,Wei HUANG,Weiwei ZHAO,Yue WANG,Song WANG,Chunyan SU. Clinical characteristics of COVID-19 infection in patients undergoing hemodialysis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 267-272.
[11] Zhanhong LAI,Jiachen LI,Zelin YUN,Yonggang ZHANG,Hao ZHANG,Xiaoyan XING,Miao SHAO,Yuebo JIN,Naidi WANG,Yimin LI,Yuhui LI,Zhanguo LI. A unicenter real-world study of the correlation factors for complete clinical response in idiopathic inflammatory myopathies [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 284-292.
[12] Xiaoqian SI,Xiujuan ZHAO,Fengxue ZHU,Tianbing WANG. Risk factors for acute respiratory distress syndrome in patients with traumatic hemorrhagic shock [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 307-312.
[13] Yangyang LI,Lin HOU,Zijun MA,Shanyamei HUANG,Jie LIU,Chaomei ZENG,Jiong QIN. Association of pregnancy factors with cow's milk protein allergy in infants [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 144-149.
[14] Xiaoqiang LIU,Yin ZHOU. Risk factors of perioperative hypertension in dental implant surgeries with bone augmentation [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 93-98.
[15] Liang LUO,Yun LI,Hong-yan WANG,Xiao-hong XIANG,Jing ZHAO,Feng SUN,Xiao-ying ZHANG,Ru-lin JIA,Chun LI. Anti-endothelial cell antibodies in predicting early miscarriage [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1039-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!