Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (3): 554-561. doi: 10.19723/j.issn.1671-167X.2025.03.020

Previous Articles     Next Articles

Epidemiological investigation of asthenopia and dry eye among visual display terminal workers

Longao YANG1, Xu JIN1, Wenchu HUANG1, Lihua HE1,*(), Juan CHEN2,3,*()   

  1. 1. Department of Occupational & Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
    2. Department of Health Policy and Management, Peking University School of Public Health, Beijing 100191, China
    3. Peking University Medicine-Zhengda Guangming Joint Laboratory for Visual Health, Beijing 100191, China
  • Received:2025-02-19 Online:2025-06-18 Published:2025-06-13
  • Contact: Lihua HE, Juan CHEN
  • Supported by:
    the Peking University Medicine-Zhengda Guangming Joint Laboratory for Visual Health Funds

RICH HTML

  

Abstract:

Objective: To investigate the prevalence of asthenopia and dry eye, and to further explore the potential occupational hazard factors, so as to provide a theoretical basis for their prevention and control. Methods: A cross-sectional survey was conducted on the selected respondents. For visual display terminal (VDT) workers in employing organizations such as banks, colleges, and government departments, an online questionnaire independently developed by the research group was used for population surveys. Information including general information, work-related situations, work environment, visual health, and ergonomic factors was collected. The respondents were analyzed according to whether they suffered from asthenopia and dry eye. Relevant factors of asthenopia and dry eye were screened through t-test and Chi-square test. Subsequently, binary Logistic regression analysis was carried out to determine the risk factors of asthenopia and dry eye among the VDT workers. Results: The overall prevalence of asthenopia was 52.5% (235/448) and dry eye was 36.8% (165/448). There were no significant diffe-rences in the prevalence of asthenopia and dry eye among different genders, age groups, and groups of length of service in VDT work. However, the highest prevalence of dry eye was observed in underweight individuals (42.9%), followed by normal weight (40.6%), overweight (28.0%), and obese indivi-duals (17.4%). There was a significant difference in the prevalence of dry eye among different body mass index (BMI) groups (χ2=9.505, P=0.023). The lowest prevalence of asthenopia was observed among securities industry employees (22.6%), while higher rates were found in employees in companies (59.5%) and other employing organizations (68.8%). A significant difference in the prevalence of asthenopia among different employing organizations (χ2=14.832, P=0.022). The result of Logistic regression showed that a longer length of service in VDT work (OR=1.006, P < 0.001), a longer duration of VDT after working hours (OR=1.002, P=0.032), a too-bright monitor (OR=2.875, P=0.022), glare during work (OR=1.500, P=0.038), a louder noise in work environment (OR=1.586, P=0.012), work-related musculoskeletal disorders (WMSDs) (OR=4.366, P < 0.001) and other factors were independent risk factors of asthenopia, while wearing frame glasses (OR=0.452, P=0.037) was an independent protective factor. Glare during work (OR=2.198, P < 0.001), WMSDs (OR=2.226, P=0.001) and other factors were independent risk factors of dry eye, while overweight (OR=0.448, P=0.006), obesity (OR=0.228, P=0.032) were independent protective factors of dry eye. Conclusion: The prevalence of asthenopia and dry eye among VDT workers is relatively high, and it is associated with multiple risk factors. During prevention and control, attention should be paid to taking reasonable breaks during work, controlling glare, and strengthening visual health training and promotion.

Key words: Visual display terminal, Asthenopia, Dry eye syndromes, Risk factor

CLC Number: 

  • R181.3

Table 1

General information of the respondents (n=448)"

Variables n Proportion/%
Gender
  Male 217 48.4
  Female 231 51.6
Age group/years
   < 20 6 1.3
  20- 210 46.9
  30- 113 25.2
  40- 78 17.4
  ≥50 41 9.2
Career
  Securities 31 6.9
  Bank 14 3.1
  Hospital 115 25.7
  College/Research institution 101 22.5
  Public/Government institution 87 19.4
  Company 84 18.8
  Other 16 3.6
BMI
  Underweight 42 9.4
  Normal weight 283 63.2
  Overweight 100 22.3
  Obesity 23 5.1
Education
  High school and below 17 3.8
  Junior college 58 13.0
  College 286 63.8
  Postgraduate and above 87 19.4
Monthly income/yuan
  ≤5 000 118 26.3
  5 001-7 000 98 21.9
  7 001-8 000 50 11.2
  8 001-10 000 52 11.6
  >10 000 130 29.0

Table 2

The prevalence of asthenopia and dry eye under different demographic characteristics"

Demographic factors Total Asthenopia, n (%) Dry eye, n (%)
Gender
  Male 217 104 (47.9) 84 (38.7)
  Female 231 131 (56.7) 81 (35.1)
  χ2 3.461 0.639
  P value 0.063 0.424
Age group/years
   < 20 6 5 (83.3) 3 (50.0)
  20- 210 104 (49.5) 87 (41.4)
  30- 113 57 (50.4) 34 (30.1)
  40- 78 45 (57.7) 26 (33.3)
  ≥50 41 24 (58.5) 15 (36.6)
  χ2 4.667 4.974
  P value 0.323 0.290
BMI
  Underweight 42 20 (47.6) 18 (42.9)
  Normal weight 283 150 (53.0) 115 (40.6)
  Overweight 100 54 (54.0) 28 (28.0)
  Obesity 23 11 (47.8) 4 (17.4)
  χ2 0.721 9.505
  P value 0.868 0.023*
Types of employing organizations
  Securities 31 7 (22.6) 6 (19.4)
  Bank 14 7 (50.0) 7 (50.0)
  Hospital 115 59 (51.3) 42 (36.5)
  College/Research institution 101 53 (52.5) 45 (44.6)
  Public/Government institution 87 48 (55.2) 30 (34.5)
  Company 84 50 (59.5) 30 (35.7)
  Other 16 11 (68.8) 5 (31.3)
  χ2 14.832 8.173
  P value 0.022* 0.226
Length of service in VDT work/years
   < 5 234 116 (49.6) 73 (31.2)
  5- 69 33 (47.8) 18 (26.1)
  10- 101 60 (59.4) 29 (28.7)
  ≥20 44 26 (59.1) 17 (38.6)
  χ2 4.106 2.209
  P value 0.250 0.530

Table 3

Risk factors of asthenopia"

Variables B SE Wald χ2 P value OR (95%CI)
Types of employing organizations
  Securities Reference
  Bank 2.621 0.941 7.758 0.005 13.751 (2.174-86.964)
  Hospital 1.457 0.603 5.844 0.016 4.291 (1.317-13.980)
  College/Research institution 1.211 0.608 3.972 0.046 3.356 (1.020-11.042)
  Public/Government institution 1.899 0.635 8.947 0.003 6.682 (1.925-23.197)
  Company 2.318 0.644 12.941 < 0.001 10.158 (2.873-35.923)
  Other 2.648 0.878 9.100 0.003 14.119 (2.528-78.860)
Length of service in VDT work (by month) 0.006 0.001 13.617 < 0.001 1.006 (1.003-1.008)
Duration of VDT after working hours (by minute) 0.002 0.001 4.605 0.032 1.002 (1.000-1.004)
Monitor brightness
  Suitable Reference
  Too bright 1.056 0.461 5.250 0.022 2.875 (1.165-7.094)
Frequent head-down postures (over 4 times per minute) 0.386 0.111 12.175 < 0.001 1.471 (1.184-1.828)
Completion of conflicting tasks 0.297 0.125 5.657 0.017 1.346 (1.054-1.721)
Utilizing special talents -0.256 0.129 3.962 0.047 0.774 (0.602-0.996)
Glare 0.406 0.195 4.307 0.038 1.500 (1.023-2.200)
Noise 0.461 0.184 6.287 0.012 1.586 (1.106-2.275)
Myopia 1.413 0.388 13.268 < 0.001 4.107 (1.920-8.783)
Astigmatism 0.686 0.291 5.547 0.019 1.986 (1.122-3.517)
Glasses
  No glasses Reference
  Frame glasses -0.794 0.380 4.364 0.037 0.452 (0.215-0.952)
Eye drops using 1.566 0.339 21.322 < 0.001 4.787 (2.463-9.306)
WMSDs 1.474 0.248 35.360 < 0.001 4.366 (2.686-7.098)

Table 4

Risk factors of dry eye"

Variables B SE Wald χ2 P value OR (95%CI)
BMI
  Normal weight Reference
  Overweight -0.804 0.291 7.615 0.006 0.448 (0.253-0.792)
  Obesity -1.479 0.688 4.616 0.032 0.228 (0.059-0.878)
Smoking
  No smoking Reference
  Quitting smoking 1.314 0.428 9.419 0.002 3.722 (1.608-8.614)
Monthly income -0.151 0.076 3.996 0.046 0.860 (0.741-0.997)
Duration of computer during working hours (by minute) -0.005 0.001 16.662 < 0.001 0.995 (0.993-0.998)
Work shifts
  Day shifts Reference
  Swing shifts 1.852 0.686 7.293 0.007 6.370 (1.662-24.421)
Frequent head-turning postures (over 4 times per minute) 0.318 0.114 7.804 0.005 1.374 (1.100-1.718)
Glare 0.787 0.178 19.553 < 0.001 2.198 (1.550-3.115)
Eye drops using 0.645 0.295 4.765 0.029 1.905 (1.068-3.399)
WMSDs 0.800 0.237 11.417 0.001 2.226 (1.400-3.542)
1
Artime-Ríos E , Suárez-Sánchez A , Sánchez-Lasheras F , et al. Computer vision syndrome in healthcare workers using video display terminals: An exploration of the risk factors[J]. J Adv Nurs, 2022, 78 (7): 2095- 2110.

doi: 10.1111/jan.15140
2
Das A , Shah S , Adhikari TB , et al. Computer vision syndrome, musculoskeletal, and stress-related problems among visual display terminal users in Nepal[J]. PLoS One, 2022, 17 (7): e0268356.

doi: 10.1371/journal.pone.0268356
3
Parihar JK , Jain VK , Chaturvedi P , et al. Computer and visual display terminals (VDT) vision syndrome (CVDTS)[J]. Med J Armed Forces India, 2016, 72 (3): 270- 276.

doi: 10.1016/j.mjafi.2016.03.016
4
中华医学会眼科学分会眼视光学组. 视疲劳诊疗专家共识(2014年)[J]. 中华眼视光学与视觉科学杂志, 2014, 16 (7): 385- 387.

doi: 10.3760/cma.j.issn.1674-845X.2014.07.001
5
Seguí Mdel M , Cabrero-García J , Crespo A , et al. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace[J]. J Clin Epidemiol, 2015, 68 (6): 662- 673.

doi: 10.1016/j.jclinepi.2015.01.015
6
杨培增, 范先群. 眼科学[M]. 九版 北京: 人民卫生出版社, 2018.
7
李炳钦, 张红梅, 王志洋, 等. 天津某高校新生计算机视觉综合征现状及影响因素[J]. 中国学校卫生, 2023, 44 (6): 850- 853.
8
黄滟. 某市高中学生视频显示终端综合征的现状及影响因素分析[D]. 成都: 成都医学院, 2022.
9
董伟华, 何章彪, 帖红艳, 等. 大学生使用视频终端的用眼行为习惯的研究[J]. 济源职业技术学院学报, 2023, 22 (2): 37- 42.
10
刘乐, 周义生, 况杰, 等. 高校医学生视频显示终端综合征与抑郁症状的关系[J]. 中国学校卫生, 2022, 43 (5): 743- 745.
11
Salinas-Toro D , Cartes C , Segovia C , et al. High frequency of digital eye strain and dry eye disease in teleworkers during the coronavirus disease (2019) pandemic[J]. Int J Occup Saf Ergon, 2022, 28 (3): 1787- 1792.

doi: 10.1080/10803548.2021.1936912
12
张丽, 姜伟, 崔培胜. 视频显示终端作业人员干眼病状况调查及影响因素分析[J]. 中华临床医师杂志(电子版), 2011, 5 (9): 2731- 2734.

doi: 10.3877/cma.j.issn.1674-0785.2011.09.052
13
亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识: 检查和诊断(2020年)[J]. 中华眼科杂志, 2020, 56 (10): 741- 747.
14
Sonne M , Villalta DL , Andrews DM . Development and evaluation of an office ergonomic risk checklist: ROSA: rapid office strain assessment[J]. Appl Ergon, 2012, 43 (1): 98- 108.

doi: 10.1016/j.apergo.2011.03.008
15
Kamoy B , Magno M , Noland ST , et al. Video display terminal use and dry eye: Preventive measures and future perspectives[J]. Acta Ophthalmol, 2022, 100 (7): 723- 739.

doi: 10.1111/aos.15105
16
Yamanishi R , Sawada N , Hanyuda A , et al. Relation between body mass index and dry eye disease: The Japan Public Health Center-Based Prospective Study for the Next Generation[J]. Eye Contact Lens, 2021, 47 (8): 449- 455.

doi: 10.1097/ICL.0000000000000814
17
王英, 霍秀英, 郝凤花. 视屏显示终端作业人员干眼及眼表损害情况调查[J]. 工业卫生与职业病, 2020, 46 (4): 274- 276.
18
Larese Filon F , Drusian A , Ronchese F , et al. Video display operator complaints: A 10-year follow-up of visual fatigue and refractive disorders[J]. Int J Environ Res Public Health, 2019, 16 (14): 2501.

doi: 10.3390/ijerph16142501
19
Mehra D , Galor A . Digital screen use and dry eye: A review[J]. Asia Pac J Ophthalmol (Phila), 2020, 9 (6): 491- 497.

doi: 10.1097/APO.0000000000000328
20
Coles-Brennan C , Sulley A , Young G . Management of digital eye strain[J]. Clin Exp Optom, 2019, 102 (1): 18- 29.

doi: 10.1111/cxo.12798
21
崇君慈. 干眼症发病机制及手术治疗研究进展[J]. 中外医学研究, 2022, 20 (33): 181- 184.
22
Aćimović L , Stanojlović S , Kalezić T , et al. Evaluation of dry eye symptoms and risk factors among medical students in Serbia[J]. PLoS One, 2022, 17 (10): e0275624.
23
张源, 马恩普, 潘蓓, 等. 视频终端尺寸对儿童视疲劳的影响[J]. 武警医学, 2022, 33 (12): 1016- 1019.
24
Bhatnagar KR , Dixit SG , Pandey L , et al. Digital eye strain among medical students associated with shifting to e-learning during COVID-19 pandemic: An online survey[J]. Indian J Ophthalmol, 2024, 72 (1): 98- 104.
25
Huyhua-Gutierrez SC , Zeladita-Huaman JA , Díaz-Manchay RJ , et al. Digital eye strain among Peruvian nursing students: Prevalence and associated factors[J]. Int J Environ Res Public Health, 2023, 20 (6): 5067.
26
Ekemiri K , McKnight D , Ekemiri C , et al. Computer vision syndrome and associated factors among urban and rural bankers in Trinidad and Tobago[J]. PeerJ, 2024, 12, e18584.
27
Ide T , Toda I , Miki E , et al. Effect of blue light-reducing eye glasses on critical flicker frequency[J]. Asia Pac J Ophthalmol (Phila), 2015, 4 (2): 80- 85.
28
Kaur K , Gurnani B , Nayak S , et al. Digital eye strain: A comprehensive review[J]. Ophthalmol Ther, 2022, 11 (5): 1655- 1680.
29
邹亚双. 井工煤矿环境照度和噪声强度对视疲劳的影响研究[D]. 徐州: 中国矿业大学, 2022.
[1] Wei LIU, Wen GUO, Zhe GUO, Chunyan LI, Yunlong LI, Siqi LIU, Liang ZHANG, Hui SONG. Risk factors associated with non-radiographic bone erosion in patients with gout [J]. Journal of Peking University (Health Sciences), 2025, 57(4): 735-739.
[2] Mengxi LU, Qiuping LIU, Tianjing ZHOU, Xiaofei LIU, Yexiang SUN, Peng SHEN, Hongbo LIN, Xun TANG, Pei GAO. Association of triglyceride-glucose index and cardiovascular disease in a community-based Chinese cohort [J]. Journal of Peking University (Health Sciences), 2025, 57(3): 430-435.
[3] Shuhan YANG, Yixin LI, Haoliang CUI, Youxin WANG, Yuying WU, Mingyue WANG, Yifan YANG, Nur Enkar, Lei YANG, Hui WANG. Associations of metabolic dysfunction-associated steatotic liver disease and cardiometabolic risk factor abnormalities with adverse pregnancy outcomes [J]. Journal of Peking University (Health Sciences), 2025, 57(3): 487-495.
[4] Huaqiu GUO, Zhe WANG, Xue YANG, Jie BAI. Clinical features and risk factors of patients with oral bleeding in dental emergency [J]. Journal of Peking University (Health Sciences), 2025, 57(1): 142-147.
[5] Minting DENG, Nan WANG, Bin XIA, Yuming ZHAO, Junxia ZHU. Factors associated with spontaneous re-eruption of traumatically intruded permanent anterior teeth in children and adolescents [J]. Journal of Peking University (Health Sciences), 2025, 57(1): 148-153.
[6] Yukai LI, Hongyan WANG, Liang LUO, Yun LI, Chun LI. Clinical significance of antiphospholipid antibodies in Behcet disease with thrombosis [J]. Journal of Peking University (Health Sciences), 2024, 56(6): 1036-1040.
[7] Yang TIAN, Yongzheng HAN, Jiao LI, Mingya WANG, Yinyin QU, Jingchao FANG, Hui JIN, Min LI, Jun WANG, Mao XU, Shenglin WANG, Xiangyang GUO. Incidence and risk factors of postoperative epidural hematoma following anterior cervical spine surgery [J]. Journal of Peking University (Health Sciences), 2024, 56(6): 1058-1064.
[8] Mingrui WANG, Jinhui LAI, Jiaxiang JI, Xinwei TANG, Haopu HU, Qi WANG, Kexin XU, Tao XU, Hao HU. Risk factors for decreased quality of life in patients with kidney stones predicted by the Chinese version of Wisconsin stone quality of life questionnaire [J]. Journal of Peking University (Health Sciences), 2024, 56(6): 1069-1074.
[9] Zhicun LI, Tianyu WU, Lei LIANG, Yu FAN, Yisen MENG, Qian ZHANG. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 896-901.
[10] Ye YAN,Xiaolong LI,Haizhui XIA,Xuehua ZHU,Yuting ZHANG,Fan ZHANG,Ke LIU,Cheng LIU,Lulin MA. Analysis of risk factors for long-term overactive bladder after radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 589-593.
[11] Yan CHEN,Kuangmeng LI,Kai HONG,Shudong ZHANG,Jianxing CHENG,Zhongjie ZHENG,Wenhao TANG,Lianming ZHAO,Haitao ZHANG,Hui JIANG,Haocheng LIN. Retrospective study on the impact of penile corpus cavernosum injection test on penile vascular function [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 680-686.
[12] Bo PANG,Tongjun GUO,Xi CHEN,Huaqi GUO,Jiazhang SHI,Juan CHEN,Xinmei WANG,Yaoyan LI,Anqi SHAN,Hengyi YU,Jing HUANG,Naijun TANG,Yan WANG,Xinbiao GUO,Guoxing LI,Shaowei WU. Personal nitrogen oxides exposure levels and related influencing factors in adults over 35 years old in Tianjin and Shanghai [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 700-707.
[13] Jing HE,Zhongze FANG,Ying YANG,Jing LIU,Wenyao MA,Yong HUO,Wei GAO,Yangfeng WU,Gaoqiang XIE. Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 722-728.
[14] Shan CAI,Yihang ZHANG,Ziyue CHEN,Yunfe LIU,Jiajia DANG,Di SHI,Jiaxin LI,Tianyu HUANG,Jun MA,Yi SONG. Status and pathways of factors influencing physical activity time among elementary and junior high school students in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 403-410.
[15] Zuhong ZHANG,Tianjiao CHEN,Jun MA. Associations between puberty timing and cardiovascular metabolic risk factors among primary and secondary students [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 418-423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!