Journal of Peking University (Health Sciences) ›› 2026, Vol. 58 ›› Issue (1): 74-83. doi: 10.19723/j.issn.1671-167X.2026.01.010

Previous Articles     Next Articles

Clinical comparison of xenograft versus synthetic bone graft materials in micro crestal flap-alveolar ridge preservation following extraction of molars

Siqiao ZHANG1, Jian LIU1, Tao XU2,*(), Wenjie HU1,*(), Haoyun ZHANG1, Yiping WEI1   

  1. 1. Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Oral Emergency, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2025-10-10 Online:2026-02-18 Published:2025-12-09
  • Contact: Tao XU, Wenjie HU
  • Supported by:
    the Clinical Research Foundation of Peking University School and Hospital of Stomatology(PKUSS-2023CRF505)

RICH HTML

  

Abstract:

Objective: To compare the clinical outcomes between xenogeneic bone graft materials primarily composed of deproteinized bovine bone mineral (DBBM) and synthetic bone graft materials primarily composed of hydroxyapatite (HA) used in micro crestal flap-alveolar ridge preservation (MCF-ARP) of periodontally compromised molars, so as to provide a reference for their application and promotion. Methods: In this retrospective case series study, patients who received treatment between October 2024 and April 2025 were enrolled. All the patients underwent MCF-ARP, using either DBBM or HA. Hard tissue changes and alveolar ridge contour collapse were evaluated and compared between the two groups preoperatively and 6 months postoperatively using cone beam computed tomography (CBCT) and intraoral scanning. Soft tissue healing process after the surgery was also assessed. Results: A total of 14 molars from 14 patients were included. No significant differences were found in hard tissue changes between the two groups 6 months after the surgery (P>0.05). Two weeks and 1 month postoperatively, the vertical collapse of the contour at the ridge center was significantly greater in the HA group compared with the DBBM group [2 weeks: (2.73±1.89) mm vs. (0.00±0.79) mm, P < 0.05; 1 month: (2.74±1.13) mm vs. (0.35±2.34) mm, P < 0.05]. No significant differences were found in other sites at any other follow-up points (P>0.05). In terms of wound healing, the HA group showed a significantly higher percentage of wound area lacking keratinized tissue coverage compared with the DBBM group both 2 weeks and 1 month after the surgery (2 weeks: 47.88%±6.56% vs. 29.43%±14.25%, P < 0.05; 1 month: 25.68%±13.06% vs. 7.19%±7.18%, P < 0.01). Conclusion: Within the limitations of this study, the analysis suggests that there is no statistically significant difference in hard tissue and alveolar ridge contour parameters 6 months after MCF-ARP following extraction of periodontally compromised molars. However, early soft tissue healing is faster when using DBBM. Future randomized controlled trials with histological analysis are warranted for further validation.

Key words: Periodontitis, Alveolar ridge preservation, Alveolar bone grafting, Heterografts

CLC Number: 

  • R782.1

Figure 1

The surgical procedure of minimally invasive tooth extraction combined with MCF-ARP using DBBM or HA A1-F1, DBBM group; A2-F2, HA group; A1 and A2, preoperative occlusal view; B1 and B2, minimally invasive tooth extraction, thorough debridement of the socket, and minimal flap reflection to expose the bone surface; C1 and C2, bone graft material placed in the socket, absorbable membrane placed between the gingival flap and the crestal bone; D1 and D2, absorbable membrane covering the bone graft material extending to the apical aspect of the contralateral crestal bone; E1 and E2, absorbable collagen sponge covering the membrane; F1 and F2, coronally repositioned flap, fixed with 4-0 non-absorbable interrupted sutures. MCF-ARP, micro crestal flap-alveolar ridge preservation; DBBM, deproteinized bovine bone mineral; HA, hydroxyapatite."

Figure 2

Data collection MCF-ARP, micro crestal flap-alveolar ridge preservation; DBBM, deproteinized bovine bone mineral; HA, hydroxyapatite; CBCT, cone beam computed tomography."

Figure 3

Clinical photographs and CBCT cross-sectional images of DBBM group at different time points A1-A7, preoperative occlusal view; B1-B7, tooth socket; C1-C7, immediate postoperative occlusal view; D1-D7, immediate postoperative CBCT; E1-E7, 6 months follow-up; F1-F7; CBCT taken 6 months postoperative. Abbreviations as in Figure 2."

Figure 4

Clinical photographs and CBCT cross-sectional images of HA group at different time points A1-A7, preoperative occlusal view; B1-B7, tooth socket; C1-C7, immediate postoperative occlusal view; D1-D7, immediate postoperative CBCT; E1-E7, 6 months follow-up; F1-F7; CBCT taken 6 months postoperative. Abbreviations as in Figure 2."

Figure 5

Measurement of CBCT radiographic indicators a, height at the center of the socket (CH), buccal bone height (BH) and lingual/palatal bone height (LH); b, bone wall thicknesses at 1 mm and 3 mm apically below the buccal and lingual/palatal bone crests (TB1, TB3, TL1, TL3); c, ridge widths at 1 mm and 3 mm apically below the higher bone crests (WH1, WH3); d, postoperative height at the center of the socket (PCH), postoperative buccal bone height (PBH) and postoperative lingual/palatal bone height (PLH); e, postoperative ridge widths at 1 mm and 3 mm apically below the higher bone crests (PWH1, PWH3). Yellow curve, baseline alveolar bone contour; Green curve, 6-month postoperative alveolar bone contour. B, buccal; L, lingual; CBCT, cone beam computed tomography."

Figure 6

Measurement of alveolar ridge contour parameter by intraoral scanning a, changes in soft tissue contour at follow-up time points; b, vertical reduction of the contour on the buccal free gingival margins (VBGM), vertical reduction of the contour on the lingual/palatal free gingival margins (VLGM) and vertical reduction of the contour on the center of gingival margins (VCGM); c, horizontal reduction of the buccal or lingual/palatal contour at 1 mm, 3 mm apically (HRB1, HRB3, HRL1, HRL3). Green curve, preoperative; Red curve, immediately postoperative; Blue curve, 2 weeks postoperative; Purple curve, 1 month postoperative; Orange curve, 3 months postoperative; Yellow curve, 6 months postoperative. B, buccal; P, palatal."

Figure 7

Measurement of wound area at different time points A, immediately postoperative; B, 2 weeks postoperative; C, 1 month postoperative; D, 3 months postoperative. Red curve, wound area."

Table 1

Comparison of patient baseline characteristics"

Items DBBM (n=7) HA (n=7) t/Z P
Age/years 52.29±9.90 53.86±11.17 -0.28a 0.785
Gender 0.266
  Female 4 1
  Male 3 6
Tooth position >0.999
  Maxillary 5 6
  Mandibular 2 1
BH/mm 5.32±3.69 4.28±4.00 0.51a 0.618
LH/mm 5.85±3.97 4.67±3.74 0.57a 0.577
CH/mm 5.08±3.53 3.65±2.04 0.93a 0.374
TB1/mm 1.40±1.02 1.09±0.89 0.61a 0.555
TB3/mm 1.64±1.39 1.65±1.60 -0.02a 0.987
TL1/mm 1.46±0.40 1.58±1.07 -0.29a 0.780
TL3/mm 2.07±0.79 2.18±1.99 -0.13a 0.897
WH1/mm 1.83 (1.52, 2.19) 1.70 (1.31, 8.28) -0.06b 0.949
WH3/mm 6.83 (2.57, 13.26) 5.67 (1.60, 12.77) -0.06b 0.949

Table 2

Comparison of changes in hard tissue parameter"

Items DBBM (n=7) HA (n=7) t/Z P
PBH/mm 3.45±4.01 6.11±3.38 -1.34a 0.204
PLH/mm 5.85±3.64 5.46±2.32 0.24a 0.813
PCH/mm 13.61±4.07 10.43±5.03 1.30a 0.217
DBH/mm -1.88±1.48 1.83±2.36 -3.53a 0.004*
DLH/mm 0.00±3.07 0.89±3.34 -0.52a 0.615
DCH/mm 8.53±2.56 6.77±3.45 1.09a 0.298
PWH1/mm 8.84±2.66 8.66±3.14 0.12a 0.908
PWH3/mm 10.55±2.65 11.37±2.46 -0.60a 0.558
DWH1/mm 7.10 (4.73, 8.94) 7.22 (-0.54, 9.58) -0.19b 0.848
DWH3/mm 3.13±6.10 4.59±5.17 -0.48a 0.637

Figure 8

Alveolar ridge contour reduction at follow-up time points of the two groups A, vertical reduction of the contour on the buccal free gingival margins (VBGM); B, vertical reduction of the contour on the lingual/palatal free gingival margins (VLGM); C, horizontal reduction of the buccal contour at 1 mm apically (HRB1); D, horizontal reduction of the lingual/palatal contour at 1 mm apically (HRL1); E, horizontal reduction of the buccal contour at 3 mm apically (HRB3); F, horizontal reduction of the lingual/palatal contour at 3 mm apically (HRL3). DBBM, deproteinized bovine bone mineral; HA, hydroxyapatite."

1
Atieh MA , Alnaqbi M , Abdunabi F , et al. Alveolar ridge preservation in extraction sockets of periodontally compromised teeth: A systematic review and meta-analysis[J]. Clin Oral Implants Res, 2022, 33 (9): 869- 885.

doi: 10.1111/clr.13975
2
Zhao L , Xu T , Hu W , et al. Preservation and augmentation of molar extraction sites affected by severe bone defect due to advanced periodontitis: A prospective clinical trial[J]. Clin Implant Dent Relat Res, 2018, 20 (3): 333- 344.

doi: 10.1111/cid.12585
3
Hämmerle CHF , Araújo MG , Simion M . Evidence-based knowledge on the biology and treatment of extraction sockets[J]. Clin Oral Implants Res, 2012, 23 (Suppl 5): 80- 82.
4
Bassir SH , Alhareky M , Wangsrimongkol B , et al. Systematic review and meta-analysis of hard tissue outcomes of alveolar ridge preservation[J]. Int J Oral Maxillofac Implants, 2018, 33 (5): 979- 994.

doi: 10.11607/jomi.6399
5
Pelegrine AA , da Costa CES , Correa MEP , et al. Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft[J]. Clin Oral Implants Res, 2010, 21 (5): 535- 542.

doi: 10.1111/j.1600-0501.2009.01891.x
6
Atieh MA , Alsabeeha NH , Payne AG , et al. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development[J]. Cochrane Database Syst Rev, 2021, 4 (4): CD010176.
7
Park SH , Song YW , Sanz-Martín I , et al. Clinical benefits of ridge preservation for implant placement compared to natural healing in maxillary teeth: A retrospective study[J]. J Clin Periodontol, 2020, 47 (3): 382- 391.

doi: 10.1111/jcpe.13231
8
Cha JK , Song YW , Park SH , et al. Alveolar ridge preservation in the posterior maxilla reduces vertical dimensional change: A randomized controlled clinical trial[J]. Clin Oral Implants Res, 2019, 30 (6): 515- 523.

doi: 10.1111/clr.13436
9
Wei Y , Xu T , Zhao L , et al. Ridge preservation in maxillary molar extraction sites with severe periodontitis: A prospective observational clinical trial[J]. Clin Oral Investig, 2022, 26 (3): 2391- 2399.

doi: 10.1007/s00784-021-04204-z
10
García-González S , Galve-Huertas A , Aboul-Hosn Centenero S , et al. Volumetric changes in alveolar ridge preservation with a compromised buccal wall: A systematic review and meta-analysis[J]. Med Oral Patol Oral Cir Bucal, 2020, 25 (5): e565- e575.
11
MacBeth N , Trullenque-Eriksson A , Donos N , et al. Hard and soft tissue changes following alveolar ridge preservation: A systematic review[J]. Clin Oral Implants Res, 2017, 28 (8): 982- 1004.

doi: 10.1111/clr.12911
12
Lai VJ , Michalek JE , Liu Q , et al. Ridge preservation following tooth extraction using bovine xenograft compared with porcine xenograft: A randomized controlled clinical trial[J]. J Periodontol, 2020, 91 (3): 361- 368.

doi: 10.1002/JPER.19-0211
13
Barootchi S , Tavelli L , Majzoub J , et al. Alveolar ridge preservation: Complications and cost-effectiveness[J]. Periodontol 2000, 2023, 92 (1): 235- 262.

doi: 10.1111/prd.12469
14
Zhang H , Xu T , Wei Y , et al. Assessment of soft and hard tissue changes following micro crestal flap-Alveolar ridge preservation and augmentation at molar extraction sites in patients with stage Ⅲ/Ⅳ periodontitis: A randomized controlled trial[J]. J Clin Periodontol, 2024, 51 (10): 1311- 1322.

doi: 10.1111/jcpe.14045
15
赵丽萍, 詹雅琳, 胡文杰, 等. 不同测量方法评价磨牙拔牙位点保存术后牙槽骨的变化[J]. 北京大学学报(医学版), 2016, 48 (1): 126- 132.

doi: 10.3969/j.issn.1671-167X.2016.01.023
16
赵丽萍, 胡文杰, 徐涛, 等. 罹患重度牙周病变磨牙拔牙后两种牙槽嵴保存方法的比较[J]. 北京大学学报(医学版), 2019, 51 (3): 579- 585.

doi: 10.19723/j.issn.1671-167X.2019.03.030
17
Wei Y , Zhao L , Zhang H , et al. Ridge preservation in periodontally compromised molar sockets with and without primary wound closure: A comparative controlled clinical trial[J]. Clin Oral Implants Res, 2024, 35 (1): 131- 139.

doi: 10.1111/clr.14204
18
Araújo MG , Silva CO , Misawa M , et al. Alveolar socket healing: What can we learn?[J]. Periodontol 2000, 2015, 68 (1): 122- 134.
19
Araújo M , Linder E , Lindhe J . Effect of a xenograft on early bone formation in extraction sockets: An experimental study in dog[J]. Clin Oral Implants Res, 2009, 20 (1): 1- 6.
20
Lindhe J , Cecchinato D , Donati M , et al. Ridge preservation with the use of deproteinized bovine bone mineral[J]. Clin Oral Implants Res, 2014, 25 (7): 786- 790.

doi: 10.1111/clr.12170
21
Sbordone C , Toti P , Martuscelli R , et al. Retrospective volume analysis of bone remodeling after tooth extraction with and without deproteinized bovine bone mineral insertion[J]. Clin Oral Implants Res, 2016, 27 (9): 1152- 1159.

doi: 10.1111/clr.12712
22
Vaia E , Nicolò M , Vaia E , et al. Alveolar ridge preservation with deproteinized bovine bone mineral and xenogeneic collagen matrix: A 12-month clinical and histomorphometric case series[J]. Int J Periodontics Restorative Dent, 2021, 41 (3): 423- 430.
23
Lee J , Yun J , Kim JJ , et al. Retrospective study of alveolar ridge preservation compared with no alveolar ridge preservation in periodontally compromised extraction sockets[J]. Int J Implant Dent, 2021, 7 (1): 23.

doi: 10.1186/s40729-021-00305-2
24
Wei Y , Xu T , Hu W , et al. Socket preservation following extraction of molars with severe periodontitis[J]. Int J Periodontics Restorative Dent, 2021, 41 (2): 269- 275.

doi: 10.11607/prd.4444
25
Mangano C , Luongo G , Luongo F , et al. Custom-made computer-aided-design/computer-assisted-manufacturing (CAD/CAM) synthetic bone grafts for alveolar ridge augmentation: A retrospective clinical study with 3 years of follow-up[J]. J Dent, 2022, 127, 104323.

doi: 10.1016/j.jdent.2022.104323
26
Luo G , Huang Y , Gu F . The osteogenesis effect of rhBMP2-loaded calcium phosphate cements in repairing dental extraction sockets[J]. Am J Transl Res, 2022, 14 (10): 7172- 7177.
27
朱磊, 刘庆成, 于洪波. 牙槽骨增量骨皮质切开术后2种植骨材料成骨的影像学分析[J]. 中国口腔颌面外科杂志, 2021, 19 (6): 525- 530.
28
Ozzo S , Kheirallah M . The efficiency of two different synthetic bone graft materials on alveolar ridge preservation after tooth extraction: A split-mouth study[J]. BMC Oral Health, 2024, 24 (1): 1040.

doi: 10.1186/s12903-024-04803-8
29
Stumbras A , Kuliesius P , Januzis G , et al. Alveolar ridge preservation after tooth extraction using different bone graft materials and autologous platelet concentrates: A systematic review[J]. J Oral Maxillofac Res, 2019, 10 (1): e2.
30
Kijartorn P , Wongpairojpanich J , Thammarakcharoen F , et al. Clinical evaluation of 3D printed nano-porous hydroxyapatite bone graft for alveolar ridge preservation: A randomized controlled trial[J]. J Dent Sci, 2022, 17 (1): 194- 203.

doi: 10.1016/j.jds.2021.05.003
31
Mardas N , Chadha V , Donos N . Alveolar ridge preservation with guided bone regeneration and a synthetic bone substitute or a bovine-derived xenograft: A randomized, controlled clinical trial[J]. Clin Oral Implants Res, 2010, 21 (7): 688- 698.

doi: 10.1111/j.1600-0501.2010.01918.x
32
Gao L , Zhu H , Kou Y , et al. The effects of β-TCP and/or xenogeneic bone substitute on alveolar ridge preservation: A randomized clinical trial[J]. Clin Oral Investig, 2025, 29 (4): 200.

doi: 10.1007/s00784-025-06272-x
33
Shakibaie-M B . Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: A controlled clinical study[J]. Int J Periodontics Restorative Dent, 2013, 33 (2): 223- 228.

doi: 10.11607/prd.0734
34
Jung RE , Philipp A , Annen BM , et al. Radiographic evaluation of different techniques for ridge preservation after tooth extraction: A randomized controlled clinical trial[J]. J Clin Periodontol, 2013, 40 (1): 90- 98.

doi: 10.1111/jcpe.12027
35
Vignoletti F , Matesanz P , Rodrigo D , et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review[J]. Clin Oral Implants Res, 2012, 23 (Suppl 5): 22- 38.
36
Thoma DS , Bienz SP , Lim HC , et al. Explorative randomized controlled study comparing soft tissue thickness, contour changes, and soft tissue handling of two ridge preservation techniques and spontaneous healing two months after tooth extraction[J]. Clin Oral Implants Res, 2020, 31 (6): 565- 574.

doi: 10.1111/clr.13594
37
Han JJ , Chang AR , Ahn J , et al. Efficacy and safety of rhBMP/β-TCP in alveolar ridge preservation: A multicenter, randomized, open-label, comparative, investigator-blinded clinical trial[J]. Maxillofac Plast Reconstr Surg, 2021, 43 (1): 42.

doi: 10.1186/s40902-021-00328-0
[1] Lianfei PAN, Wenjing LI, Ruiyang WANG, Jian JIAO, Zhanqiang CAO, Li GAO, Dong SHI. Short-term efficacy and influencing factors of systemic antibiotics as an adjunct to mechanical periodontal therapy for stages Ⅲ/Ⅳ periodontitis [J]. Journal of Peking University (Health Sciences), 2026, 58(1): 30-36.
[2] Rentao TANG, Liuchang YANG, Jie NIE, Xiaoyan WANG. Microbial communities in extraradicular infections of post-treatment apical periodontitis without or with sinus tracts [J]. Journal of Peking University (Health Sciences), 2026, 58(1): 43-49.
[3] Baojin MA, Jianhua LI, Yuanhua SANG, Yang YU, Jichuan QIU, Jinlong SHAO, Kai LI, Shiyue LIU, Mi DU, Lingling SHANG, Shaohua GE. Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation [J]. Journal of Peking University (Health Sciences), 2025, 57(5): 841-846.
[4] Pei CAO, Qingxian LUAN. Periodontitis and systemic diseases: Thinking and explorations [J]. Journal of Peking University (Health Sciences), 2025, 57(5): 852-858.
[5] Zhenying BAO, Yajie WANG. Application of combined detection of inflammatory indexes and cytokines in chronic periodontitis [J]. Journal of Peking University (Health Sciences), 2025, 57(4): 772-778.
[6] Yutong SHI, Yiping WEI, Wenjie HU, Tao XU, Haoyun ZHANG. Evaluation of micro crestal flap-alveolar ridge preservation following extraction of mandibular molars with severe periodontitis [J]. Journal of Peking University (Health Sciences), 2025, 57(1): 33-41.
[7] Jingqian LI, Zilu ZHU, Jian JIAO, Jie SHI. Clinical efficacy of clear aligner treatment for pathologically migrated teeth in the anterior region of patients with severe periodontitis [J]. Journal of Peking University (Health Sciences), 2025, 57(1): 51-56.
[8] Yuru HU,Juan LIU,Wenjing LI,Yibing ZHAO,Qiqiang LI,Ruifang LU,Huanxin MENG. Relationship between short-chain fatty acids in the gingival crevicular fluid and periodontitis of stage Ⅲ or Ⅳ [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 332-337.
[9] Han ZHANG,Yixuan QIN,Diyuan WEI,Jie HAN. A preliminary study on compliance of supportive treatment of patients with periodontitis after implant restoration therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 39-44.
[10] Chang SHU,Ye HAN,Yuzhe SUN,Zaimu YANG,Jianxia HOU. Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 45-50.
[11] Xi-yan PEI,Wen YANG,Xiang-ying OUYANG,Feng SUN. Comparison of clinical effects between periodontal endoscopy aiding subgingival debridement and flap surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 716-720.
[12] Jing WEN,Xiang-ying OUYANG,Xi-yan PEI,Shan-yong QIU,Jian-ru LIU,Wen-yi LIU,Cai-fang CAO. Multivariable analysis of tooth loss in subjects with severe periodontitis over 4-year natural progression [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 70-77.
[13] ZHU Xiao-ling,LI Wen-jing,WANG Xian-e,SONG Wen-li,XU Li,ZHANG Li,FENG Xiang-hui,LU Rui-fang,SHI Dong,MENG Huan-xin. Gene polymorphisms of cytochrome B-245 alpha chain (CYBA) and cholesteryl ester transfer protein (CETP) and susceptibility to generalized aggressive periodontitis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 18-22.
[14] XU Xin-ran,HUO Peng-cheng,HE Lu,MENG Huan-xin,ZHU Yun-xuan,JIN Dong-si-qi. Comparison of initial periodontal therapy and its correlation with white blood cell level in periodontitis patients with or without diabetes mellitus [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 48-53.
[15] GAO Hong-yu,MENG Huan-xin,HOU Jian-xia,HUANG Bao-xin,LI Wei. Expression and distribution of calprotectin in healthy and inflamed periodontal tissues [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 744-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!