Journal of Peking University(Health Sciences) ›› 2017, Vol. 49 ›› Issue (1): 1-005. doi: 10.3969/j.issn.1671-167X.2017.01.001

• Article •     Next Articles

Surgical reconstruction of maxillary defects using a computer-assisted techniques

ZHANG Wen-bo, YU Yao, WANG Yang, LIU Xiao-jing, MAO Chi, GUO Chuan-bin, YU Guang-yan, PENG Xin△   

  1. (Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2017-02-18 Published:2017-02-18
  • Contact: PENG Xin E-mail:pxpengxin@263.net
  • Supported by:

    Supported by National Supporting Program for Science and Technology(2014BAI 04B06) and Beijing Municipal Science and Technology Commission (Z161100000116053)

Abstract:

The maxilla is the most important bony support of the mid-face skeleton and is critical for both esthetics and function. Maxillary defects, resulting from tumor resection, can cause severe func-tional and cosmetic deformities. Furthermore, maxillary reconstruction presents a great challenge for oral and maxillofacial surgeons. Nowadays, vascularized composite bone flap transfer has been widely used for functional maxillary reconstruction. In the last decade, we have performed a comprehensive research on functional maxillary reconstruction with free fibula flap and reported excellent functional and acceptable esthetic results. However, this experience based clinical procedure still remainssome problems in accuracy and efficiency. In recent years, computer assisted techniques are now widely used in oral and maxillofacial surgery. We have performed a series of study on maxillary reconstruction with computer assisted techniques. The computer assisted techniques used for maxillary reconstruction mainly include: (1) Three dimensional (3D) reconstruction and tumor mapping: providing a 3D view of maxillary tumor and adjacent structures and helping to make the diagnosis of maxillary tumor accurate and objective; (2) Virtual planning: simulating tumor resection and maxillectomy as well as fibula reconstruction on the compu-ter, so that to make an ideal surgical plan; (3) 3D printing: producing a 3D stereo model for prebending individualized titanium mesh and also providing template or cutting guide for the surgery; (4) Surgical navigation: the bridge between virtual plan and real surgery, confirming the virtual plan during the surgery and guarantee the accuracy; (5) Computer assisted analyzing and evaluating: making a quantitative and objective of the final result and evaluating the outcome. We also performed a series of studies to evaluate the application of computer assisted techniques used for maxillary reconstruction, including: (1) 3D tumor mapping technique for accurate diagnosis and treatment of maxillary tumor; (2) Maxillary reconstruction with free fibula flap used computer assisted techniques; (3) Computer assisted orbital floor reconstruction after maxillectomy. The results suggested that computer assisted techniques could significantly improve the clinical outcome of maxillary reconstruction.

CLC Number: 

  • R782.2
[1] Xinyu XU,Ling WU,Fengqi SONG,Zili LI,Yi ZHANG,Xiaojing LIU. Mandibular condyle localization in orthognathic surgery based on mandibular movement trajectory and its preliminary accuracy verification [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 57-65.
[2] Congwei WANG,Min GAO,Yao YU,Wenbo ZHANG,Xin PENG. Clinical analysis of denture rehabilitation after mandibular fibula free-flap reconstruction [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 66-73.
[3] Andong CAI,Xiaoxia WANG,Wenjuan ZHOU,Zhonghao LIU. Comparison of the virtual surgical planning position of maxilla and condyle with the postoperative real position in patients with mandibular protrusion [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 74-80.
[4] Wen ZHANG,Xiao-jing LIU,Zi-li LI,Yi ZHANG. Effect of alar base cinch suture based on anatomic landmarks on the morphology of nasolabial region in patients after orthognathic surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 736-742.
[5] Zi-xiang GAO,Yong WANG,Ao-nan WEN,Yu-jia ZHU,Qing-zhao QIN,Yun ZHANG,Jing WANG,Yi-jiao ZHAO. Automatic determination of mandibular landmarks based on three-dimensional mandibular average model [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 174-180.
[6] LAN Lin,HE Yang,AN Jin-gang,ZHANG Yi. Relationship between prognosis and different surgical treatments of zygomatic defects: A retrospective study [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 356-362.
[7] ZHU Yu-jia,ZHAO Yi-jiao,ZHENG Sheng-wen,WEN Ao-nan,FU Xiang-ling,WANG Yong. A method for constructing three-dimensional face symmetry reference plane based on weighted shape analysis algorithm [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 220-226.
[8] Tian-cheng QIU,Xiao-jing LIU,Zhu-lin XUE,Zi-li LI. Evaluation of the reproducibility of non-verbal facial expressions in normal persons using dynamic stereophotogrammetric system [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1107-1111.
[9] Xian-tao SUN,Wei HE,Xiao-jing LIU,Zi-li LI,Xing WANG. Feasibility of Delaire cephalometric analysis to predict the ideal sagittal position of the maxilla and chin for surgery-first patients in orthognathic surgery [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 90-96.
[10] Shun-ji WANG,Wen-bo ZHANG,Yao YU,Xiao-yan XIE,Hong-yu YANG,Xin PENG. Application of computer-assisted design for anterolateral thigh flap in oral and maxillofacial reconstruction [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 119-123.
[11] Tian-wen ZHANG,Xiao-xia WANG,Zi-li LI,Biao YI,Cheng LIANG,Xing WANG. Establishment of three-dimensional measurement methods of nasolabial soft tissue for patients with maxillary protrusion [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 944-948.
[12] Ren ZHOU,Hong-chen ZHENG,Wen-yong LI,Meng-ying WANG,Si-yue WANG,Nan LI,Jing LI,Zhi-bo ZHOU,Tao WU,Hong-ping ZHU. Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 564-570.
[13] WU Ling, LIU Xiao-jing, LI Zi-li, WANG Xing. Evaluation of accuracy of virtual occlusal definition in Angle class Ⅰ molar relationship [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 154-159.
[14] LIU Yu-nan, LIU Xiao-jing, YU Xiao-meng, ZHAO Fu-yun. Diagnosis accuracy of fine-needle aspiration cytology for vascular anomalies [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 527-530.
[15] WU Yu, LI Zi-li, WANG Xing, YI Biao, MA Lian. Transpalatal modified Le Fort Ⅰ osteotomy for correction of maxillary hypoplasia in cleft lip and palate patients: a preliminary clinical application [J]. Journal of Peking University(Health Sciences), 2016, 48(3): 550-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!