Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (4): 721-728. doi: 10.19723/j.issn.1671-167X.2023.04.025

Previous Articles     Next Articles

Effects of surface treatment on the phase and fracture strength of yttria- and magnesia-stabilized zirconia implants

Qian DING1,Wen-jin LI1,Feng-bo SUN2,Jing-hua GU3,Yuan-hua LIN2,Lei ZHANG1,*()   

  1. 1. Department of Proshodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    3. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2020-10-12 Online:2023-08-18 Published:2023-08-03
  • Contact: Lei ZHANG E-mail:drzhanglei@yeah.net
  • Supported by:
    the National Natural Science Foundation of China(81671026);the Beijing Natural Science Foundation(7192233);the Capital Health Development Research Special Fund(首发2020-2-4104);the PKU School of Stomatology for Talented Young Investigators(PKUSS20190110)

RICH HTML

  

Abstract:

Objective: To evaluate the effects of surface treatment on the phase and fracture strength of yttria-and magnesia-stabilized and its mechanisms. Methods: One-piece cylindrical screw-type implants were fabricated with yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and magnesia partially stabilized zirconia (Mg-PSZ) using computer aided design (CAD)/computer aided manufacture (CAM) technique.They were divided into three groups: (1) placed in water for 1 h after final sintering (control group), (2) sandblasting using 110 μm Al2O3 particles, (3) sandblasting plus etching with hydrofluoric acid for 1 h.The surface morphology and roughness of the implants were evaluated.Tetragonal to monoclinic transformation was measured on the surface by X-ray diffraction.Static tests of the zirconia implants were carried out at room temperature following the International Standards Organization (ISO)14801:2014 Standard. Results: Both sandblasting alone and sandblasting plus acid etching significantly increased surface roughness (Ra) of Mg-PSZ and Y-TZP implants (P < 0.01), with sandblasting plus acid etching exhibited the highest surface roughness.No monoclinic band was detected in Mg-PSZ surface.Compared with the control group, the surface monoclinic content of Mg-PSZ had no obvious change after surface treatments.However, strong monoclinic bands appeared in surface modified Y-TZP.Monoclinic content of Y-TZP was higher than that of control group (1.55%) after both sandblasting alone (16.44%) and sandblasting plus acid etching (7.68%).For Mg-PSZ implants, fracture strengths of sandblasting group and sandblasting plus acid etching group were (294.1±3.3) N and (331.3±26.4) N respectively, which were lower than that of control group (458.4±48.7) N with significant differences (P < 0.01).For Y-TZP implants, fracture strength of control group was (827.3±101.6) N.Compared with control group, sandblasting group showed significantly higher fracture strength (P=0.03), which was (1 162.9±116.5) N.While sandblasting plus acid etching group had a fracture strength of (867.2±171.0) N, with no significant difference with control group (P>0.99). Conclusion: Sandblasting improved the fracture strength of Y-TZP implants.For the Mg-PSZ implants manufactured in this study, surface treatments with sandblasting and sandblasting plus acid etching resulted in a decrease of fracture strength.

Key words: Dental implants, Zirconia, Hydrofluoric acid, Surface properties, Scanning electron microscopy

CLC Number: 

  • R783.1

Figure 1

Final sintering curve of Mg-PSZ Mg-PSZ, magnesia partially stabilized zirconia; RT, room temperature."

Figure 2

One-piece Mg-PSZ (left) and Y-TZP (right) implants fabricated by CAD/CAM CAD, computer aided design; CAM computer aided manufacture; Mg-PSZ, magnesia partially stabilized zirconia; Y-TZP, yttria-stabilized tetragonal zirconia polycrystal."

Figure 3

Schematic (left) and image (right) of the testing machine and test set-up for static test 1, loading device; 2, nominal bone level; 3, implant; 4, specimen holder; 5, hemispherical loading member. F, the loading force; Point C, the loading center, being the intersection of the loading axis (line from point A to point B) with the axis of the implant (line from point D to point E), is well-defined. b, the moment arm."

Figure 4

Scanning electron microscopic(SEM) images showing the surface topographies of Y-TZP and Mg-PSZ zirconia implants Mg-PSZ, magnesia partially stabilized zirconia; Y-TZP, yttria-stabilized tetragonal zirconia polycrystal; CTRL, control group; SB, sandblasting; SB-HF, sandblasting and acid etching."

Table 1

Surface roughness of CAD/CAM zirconia implants (n=3)"

Surface treatment Ra/μm, $\bar x \pm s$ Rq/μm, $\bar x \pm s$ Rz/μm, $\bar x \pm s$
Y-TZP
  Control 0.67±0.03a 0.86±0.04 6.81±0.42
  Sandblasting 1.32±0.09b 1.62±0.10 10.82±0.48
  Sandblasting and acid etching 1.68±0.17c 2.06±0.20 12.93±1.15
Mg-PSZ
  Control 0.64±0.04a 0.84±0.06 6.44±0.95
  Sandblasting 1.19±0.12b 1.46±0.15 8.56±1.18
  Sandblasting and acid etching 1.59±0.19c 2.00±0.27 13.53±4.01

Figure 5

X-ray diffraction spectra showing monoclinic phase (m) and tetragonal phase (t) peak m-ZrO2, monoclinal zirconia; t-ZrO2, tetrgonal zirconia; cps, counts per second; Other abbreviations as in Figure 4."

Figure 6

Scanning electron microscopic(SEM) photographs of the cross sections of Y-TZP and Mg-PSZ specimens (white line showed the boundary of different grain topographies) Abbreviations as in Figure 4."

Table 2

The fracture strength of the CAD/CAM zirconia implants groups (n=3)"

Surface treatment Fracture strength/N, $\bar x \pm s$ F P
Y-TZP 8.56 0.017
  Control 827.3±101.6a
  Sandblasting 1 162.9±116.5b
  Sandblasting and acid etching 867.2±171.0a
Mg-PSZ 21.68 0.002
  Control 458.4±48.7c
  Sandblasting 294.1±3.3d
  Sandblasting and acid etching 331.3±26.4d
1 Elnayef B , Lazaro A , Suarez-Lopez DAF , et al. Zirconia implants as an alternative to titanium: A systematic review and meta-analysis[J]. Int J Oral Maxillofac Implants, 2017, 32 (3): e125- e134.
doi: 10.11607/jomi.5223
2 Roehling S , Astasov-Frauenhoffer M , Hauser-Gerspach I , et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017, 88 (3): 298- 307.
doi: 10.1902/jop.2016.160245
3 Kubasiewicz-Ross P , Hadzik J , Dominiak M . Osseointegration of zirconia implants with 3 varying surface textures and a titanium implant: A histological and micro-CT study[J]. Adv Clin Exp Med, 2018, 27 (9): 1173- 1179.
doi: 10.17219/acem/69246
4 Hanawa T . Zirconia versus titanium in dentistry: A review[J]. Dent Mater J, 2020, 39 (1): 24- 36.
doi: 10.4012/dmj.2019-172
5 Denry I , Kelly JR . State of the art of zirconia for dental applications[J]. Dent Mater, 2008, 24 (3): 299- 307.
doi: 10.1016/j.dental.2007.05.007
6 Toraya H , Yoshimura M , Somiya S . Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. J Am Ceram Soc, 1984, 67 (6): 119- 121.
7 Wennerberg A , Albrektsson T . Effects of titanium surface topography on bone integration: A systematic review[J]. Clin Oral Implants Res, 2009, 20 (Suppl 4): 172- 184.
8 Albrektsson T , Wennerberg A . On osseointegration in relation to implant surfaces[J]. Clin Implant Dent Relat Res, 2019, 21 (Suppl 1): 4- 7.
9 Pieralli S , Kohal RJ , Lopez HE , et al. Osseointegration of zirconia dental implants in animal investigations: A systematic review and meta-analysis[J]. Dent Mater, 2018, 34 (2): 171- 182.
doi: 10.1016/j.dental.2017.10.008
10 Soon G , Pingguan-Murphy B , Akbar SA . Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces[J]. J Mech Behav Biomed Mater, 2017, 68, 26- 31.
doi: 10.1016/j.jmbbm.2017.01.028
11 Casucci A , Osorio E , Osorio R , et al. Influence of different surface treatments on surface zirconia frameworks[J]. J Dent, 2009, 37 (11): 891- 897.
doi: 10.1016/j.jdent.2009.06.013
12 Smielak B , Klimek L . Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia[J]. J Prosthet Dent, 2015, 113 (6): 596- 602.
doi: 10.1016/j.prosdent.2015.01.001
13 Bergemann C , Duske K , Nebe JB , et al. Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts[J]. J Mater Sci Mater Med, 2015, 26 (1): 5350.
14 Flamant Q , Marro FG , Rovira J , et al. Hydrofluoric acid etching of dental zirconia. Part 1: Etching mechanism and surface characterization[J]. J Eur Ceram Soc, 2016, 36 (1): 121- 134.
doi: 10.1016/j.jeurceramsoc.2015.09.021
15 Furuya K , Takemoto S , Yamashita S , et al. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal)[J]. Dent Mater J, 2020, 39 (4): 577- 586.
doi: 10.4012/dmj.2019-090
16 王晓春, 张希艳. 材料现代分析与测试技术[M]. 北京: 国防工业出版社, 2009: 82.
17 Warren BE . X-Ray Diffraction[M]. New York: Dover Publications Inc., 1990: 251- 254.
18 Roy ME , Whiteside LA , Katerberg BJ , et al. Phase transformation, roughness, and microhardness of artificially aged yttria- and magnesia-stabilized zirconia femoral heads[J]. J Biomed Mater Res A, 2007, 83 (4): 1096- 1102.
19 Zucuni CP , Dapieve KS , Rippe MP , et al. Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding[J]. J Mech Behav Biomed Mater, 2019, 93, 222- 229.
doi: 10.1016/j.jmbbm.2019.02.013
20 Amaral M , Cesar PF , Bottino MA , et al. Fatigue behavior of Y-TZP ceramic after surface treatments[J]. J Mech Behav Biomed Mater, 2016, 57, 149- 156.
doi: 10.1016/j.jmbbm.2015.11.042
21 Aurelio IL , Marchionatti AM , Montagner AF , et al. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis[J]. Dent Mater, 2016, 32 (6): 827- 845.
doi: 10.1016/j.dental.2016.03.021
22 Karakoca S , Yilmaz H . Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics[J]. J Biomed Mater Res B Appl Biomater, 2009, 91 (2): 930- 937.
23 Egilmez F , Ergun G , Cekic-Nagas I , et al. Factors affecting the mechanical behavior of Y-TZP[J]. J Mech Behav Biomed Mater, 2014, 37, 78- 87.
doi: 10.1016/j.jmbbm.2014.05.013
24 Sanon C , Chevalier J , Douillard T , et al. A new testing protocol for zirconia dental implants[J]. Dent Mater, 2015, 31 (1): 15- 25.
doi: 10.1016/j.dental.2014.09.002
25 Ding Q , Zhang L , Bao R , et al. Effects of different surface treatments on the cyclic fatigue strength of one-piece CAD/CAM zirconia implants[J]. J Mech Behav Biomed Mater, 2018, 84, 249- 257.
doi: 10.1016/j.jmbbm.2018.05.002
26 Sanon C , Chevalier J , Douillard T , et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface[J]. Dent Mater, 2013, 29 (4): 389- 397.
doi: 10.1016/j.dental.2013.01.007
27 牛月月, 王春燕, 舒静媛, 等. 氧化锆基纳米羟基磷灰石功能梯度材料的制备及力学检测[J]. 中国组织工程研究, 2020, 24 (10): 1528- 1533.
28 Bermúdez-Reyes B , Del Refugio Lara-Banda M , Reyes-Zarate E , et al. Effect on growth and osteoblast mineralization of hydroxyapatite-zirconia (HA-ZrO2) obtained by a new low temperature system[J]. Biomed Mater, 2018, 13 (3): 035001.
doi: 10.1088/1748-605X/aaa3a4
[1] Congwei WANG,Min GAO,Yao YU,Wenbo ZHANG,Xin PENG. Clinical analysis of denture rehabilitation after mandibular fibula free-flap reconstruction [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 66-73.
[2] Fei SUN,Jian LIU,Si-qi LI,Yi-ping WEI,Wen-jie HU,Cui WANG. Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 30-37.
[3] Wei-wei LI,Hu CHEN,Yong WANG,Yu-chun SUN. Research on friction and wear behaviors of silicon-lithium spray coating on zirconia ceramics [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 94-100.
[4] LI Yi,YU Hua-jie,QIU Li-xin. Clinical classification and treatment decision of implant fracture [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 126-133.
[5] WANG Zheng,DING Qian,GAO Yuan,MA Quan-quan,ZHANG Lei,GE Xi-yuan,SUN Yu-chun,XIE Qiu-fei. Effect of porous zirconia ceramics on proliferation and differentiation of osteoblasts [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 31-39.
[6] LI Wen-jin,DING Qian,YUAN Fu-song,Sun Feng-bo,ZHENG Jian-qiao,BAO Rui,Zhang Lei. Effects of femtosecond laser treatment on surface characteristics and flexural strength of zirconia [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 770-775.
[7] YANG Xin,LI Rong,YE Hong-qiang,CHEN Hu,WANG Yong,ZHOU Yong-sheng,SUN Yu-chun. Evaluation of fracture strength of two kinds of zirconia all-ceramic crowns with different edge compensation angles [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 402-405.
[8] LI Peng,PIAO Mu-zi,HU Hong-cheng,WANG Yong,ZHAO Yi-jiao,SHEN Xiao-jing. Radiography study on osteotome sinus floor elevation with placed implant simultaneously with no graft augmentation [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 95-101.
[9] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[10] Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137.
[11] Qian WANG,Dan LI,Zhi-hui TANG. Sinus floor elevation and simultaneous dental implantation: A long term retrospective study of sinus bone gain [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 925-930.
[12] Miao ZHENG,Ling-lu ZHAN,Zhi-qiang LIU,He-ping LI,Jian-guo TAN. Effect of different plasma treated zirconia on the adhensive behaviour of human gingival fibroblasts [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 315-320.
[13] Xiao-qian LIU,Qiu-wen CHEN,Hai-lan FENG,Bing WANG,Jian QU,Zhen SUN,Mo-di HENG,Shao-xia PAN. Oral hygiene maintenance of locator attachments implant overdentures in edentulous population: A longitudinal study [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 136-144.
[14] Zhi-yong△ ZHANG,Tian MENG,Quan CHEN,Wen-shu LIU,Yu-huan CHEN. Retrospective analysis of early dental implant failure [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1088-1091.
[15] ZHOU Tuan-feng, WANG Xin-zhi . Clinical observation of the restoration of computer aided designed and manufactured one-piece zirconia posts and cores: a 5-year prospective follow-up study [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 680-684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!