Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (1): 111-119. doi: 10.19723/j.issn.1671-167X.2024.01.018

Previous Articles     Next Articles

Soft and hard tissue changes of hyperdivergent class Ⅱ patients before and after orthodontic extraction treatment

Bochun MAO,Yajing TIAN,Xuedong WANG*(),Jing LI*(),Yanheng ZHOU   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
  • Received:2022-03-21 Online:2024-02-18 Published:2024-02-06
  • Contact: Xuedong WANG,Jing LI E-mail:wangxuedong@bjmu.edu.cn;lijing1101@bjmu.edu.cn
  • Supported by:
    the National Program for Multidisciplinary Cooperative Treatment on Major Diseases(PKUSSNMP-202013);China Oral Health Foundation(A2021-021);National Natural Science Foundation of China(62076011);National Natural Science Foundation of China(81671015);Beijing Municipal Science & Technology Commission(Z171100001017128)

RICH HTML

  

Abstract:

Objective: To investigate the hard and soft tissue changing trend and contributing factors of skeletal class Ⅱ hyperdivergent patients before and after orthodontic camouflage treatment by analyzing the cephalogram and the three dimensional (3D) facial scan data. Methods: Eighteen skeletal class Ⅱ hyperdivergent adult female patients who finished camouflage orthodontic treatment were selected. Skeletal and dental measurements were carried out with the cephalometric analysis before and after the treatment. 3D facial data before and after orthodontic treatment were acquired and the anatomical landmarks were set after the repositioning and superimposition process. Hard tissue measurement included 17 mea-surement indicators (sella-nasion-subspinale angle, sella-nasion-supramental angle, subspinale-nasion-supramental angle, facial angle, angle of convexity, Frankfort horizontal plane-mandibular plane angle (FH-MP), Y axis angle, sella-nasion plane-mandibular plane angle (MP-SN), pogonion-nasion-supramental distance, upper incisor-nasion-subspinale distance, upper incisor to sella-nasion, lower incisor-nasion-supramental distance, lower incisor-nasion-supramental angle, upper incisor to lower incisor, upper incisor to sella-nasion, lower incisor-mandibular plane angle, and Z angle), and the changes before and after treatment were measured for 11 of them. Twenty soft tissue landmarks (left/right cheekbone, left/right chelion, left/right crista philtra, soft tissue gnathion, left/right gonion, glabella, labrale infe-rius, labrale superius, soft tissue menton, left/right mid-mandibular border, soft tissue pogonion, stomion superius, sublabial, subnasale, and supralabial) and 9 soft tissue indicators (lower lip height, facial convexity, lower vermilion height, mandibular contour, nasolabial angle, philtral length, philtral width, upper lip height, and upper vermilion height) were measured and recorded for treatment changes. Linear-regression analysis and correlation analysis were carried out for analyzing the relationship between hard and soft tissue changes before and after the treatment. Results: Significant differences were noticed for 18 out of the 20 cephalometric measurements and facial measurements before and after the treatment (P < 0.05), which mainly represented the sagittal retraction of lip area after the treatment. Significant vertical displacements were revealed for soft tissue menton after treatment [(1.88±2.61) mm, P < 0.05]. Significant sagittal displacements were revealed for left/right cheilion [(-2.95±1.9) mm, (-2.90±1.92) mm], labrale inferius[(-4.94±1.95) mm], labrale superius[(-3.25±1.44) mm], sublabial [(-3.10±3.5) mm], and subnasale [(-1.23±1.06) mm] after treatment (P < 0.05). An average of 4.10°±2.57° increasement was noticed for Z angle after treatment. High correlation (r>0.7) was noticed for the displacement of menton after treatment with FH-MP, with the rate of -0.183 :1, and MP-SN, with the rate of -0.157 :1. Moderate correlations (0.7≥r>0.4) were noticed for the other measurements with correlations (P < 0.05). Conclusion: A certain extent of facial improvements could be achieved with orthodontic camouflage treatment for skeletal class Ⅱ hyperdivergent patients, which were mostly represented by the improvement of sagittal relationship of nose, lips, and chin. Certain correlations were noticed for the hard and soft tissue changes.

Key words: Skeletal class Ⅱ, Hyperdivergent, Orthodontics treatment, Three-dimensional facial ana-lysis

CLC Number: 

  • R783.5

Table 1

Definitions of cephalometric measurements"

Measurement Definition
Hard tissue measurements before treatment
  SNA/(°) Sella-nasion-subspinale angle
  SNB/(°) Sella-nasion-supramental angle
  ANB/(°) Subspinale-nasion-supramental angle
  FH-NPo/(°) The angle formed by the Frankfort horizontal line and nasion-pogonion line
  NA-APo/(°) The angle formed by the nasion-subspinale line and subspinale-pogonion line
  FH-MP/(°) The angle formed by the Frankfort horizontal plane and mandibular plane
  SGn-FH/(°) The angle formed by the sella-gnathion line and Frankfort horizontal line
  MP-SN/(°) The angle formed by the sella-nasion plane and mandibular plane
  Po-NB/mm Vertical distance between pogonion and nasion-supramental line
Changes of measurements before and after treatment
  ΔU1-NA/mm The changes of vertical distance between the maxillary central incisor and nasion-subspinale line
  ΔU1-NA/(°) The changes of angle formed by the nasion-subspinale line and maxillary central incisor
  ΔL1-NB/mm The changes of vertical distance between the mandibular central incisor and nasion-supramental line
  ΔL1-NB/(°) The changes of angle formed by the nasion-supramental line and mandibular central incisor
  ΔU1-L1/(°) The changes of interincisal angle
  ΔU1-SN/(°) The changes of angle formed by the sella-nasion plane and maxillary central incisor
  ΔIMPA/(°) The changes of angle formed by the mandibular plane and mandibular central incisor
  ΔZ angle/(°) The changes of angle formed by Frankfort horizontal line and line marking the most front point of chin and lip

Figure 1

Preprocess of the three-dimensional (3D) facial model A, reposition of the 3D facial model; B, alignment of 3D facial models based on forehead and nasion area."

Table 2

Three-dimensional soft tissue landmarks and measurements"

Name Definition
Soft tissue landmark
  Left/right cheekbone (L/R Chb) Point of maximal convexity on the facial contour of the cheekbone region
  Left/right chelion (L/R Chl) Point marking the most lateral extent of the labial fissure
  Left/right crista philtri (L/R CPh) Point on each elevated margin of the philtrum at the vermilion border of the upper lip
  Soft tissue gnathion(Gn’) The halfway point on the medial curve between Pg’ and Me’ under the chin
  Left/right gonion (L/R Go) The inferior aspect of the mandible at its most acute (mandibular angle) and lateral point
  Glabella (Gl) The most convex sagittal midline point on the forehead
  Labrale inferius (Li) The midline point on the lower vermilion border of the lower lip
  Labrale superius (Ls) The midline point on the upper vermilion border of the upper lip
  Soft tissue menton (Me’) The most inferior midline point of the chin
  Left/right mid-mandibular border(L/R Mid-Mb) Point on the mandibular border, midway between Pg’ and Go, along the jaw line
  Soft tissue pogonion (Pg’) The point of maximal curvature on the midline chin curve
  Stomion superius (Sto) Midline point on the lower margin of bottom of the upper lip
  Sublabial (Sl) The deepest point of the mentolabial sulcus
  Subnasale (Sn) The apex of the nasolabial angle in the midline, where the inferior border of the nasal septum merges with the upper cutaneous lip
  Supralabial (Spl) Midline point of maximal concavity on the facial contour between Sn and Ls
Soft tissue measurement
  Lower lip height (LL H) Distance between Li and Sl
  Facial convexity (FC) Angle at Sn subtended by Gl and Pg’
  Lower vermilion height (L Verm H) Distance between Li and Sto
  Mandibular contour (Mand Cont) Angle at Me’ subtended by L/R Go projected to coronal plane
  Nasolabial angle(Nasolabial A) Angle at Sn subtended by Columella and Ls
  Philtral length (Philtral L) Distance between Sn and Ls
  Philtral width (Philtral W) Distance between L/R CPh
  Upper lip height (ULH) Distance between Sn and Sto
  Upper vermilion height (U Verm H) Distance between Ls and Sto

Table 3

Base line measurements in cephalometric analysis"

Items Value, ${\bar x}$±s
SNA/ (°) 80.94±3.35
SNB/ (°) 73.12±4.42
ANB/ (°) 7.82±2.25
FH-NPo /(°) 81.13±3.18
NA-APo /(°) 17.15±6.26
FH-MP/ (°) 37.07±6.42
SGn-FH /(°) 69.00±3.59
MP-SN/ (°) 45.40±7.34
Po-NB/mm 1.53±1.11

Table 4

Cephalometric analysis and three-dimensional facial measurements"

Items Value, ${\bar x}$±s t P
Cephalometric measurement
  ΔANB/ (°) 0.43±0.44 3.68 0.003*
  ΔMP-SN/ (°) 0.51±0.83 1.78 0.099
  ΔFH-MP/ (°) 0.46±0.92 1.86 0.085
  ΔU1-NA/mm -6.22±1.03 22.69 <0.001*
  ΔU1-NA /(°) -7.87±5.17 5.70 <0.001*
  ΔL1-NB /mm -3.67±1.35 10.13 <0.001*
  ΔL1-NB/ (°) -7.33±3.38 8.11 <0.001*
  ΔU1-L1/ (°) 16.91±5.27 -12.01 <0.001*
  ΔU1-SN/(°) -10.51±4.45 8.83 <0.001*
  ΔIMPA/(°) -6.33±3.09 7.67 <0.001*
  ΔZ angle/ (°) 4.10±2.57 5.97 <0.001*
Soft tissue measurement
  ΔLL H/mm -0.82±0.63 4.87 <0.001*
  ΔFC/mm 0.76±0.79 -3.60 0.003*
  ΔL Verm H/mm -0.87±0.88 3.72 0.003*
  ΔMand Cont /(°) 3.54±2.82 -4.69 <0.001*
  ΔNasolabial A /(°) 6.40±4.81 -4.97 <0.001*
  ΔPhiltral L /mm 0.03±0.88 -0.13 0.896
  ΔPhiltral W/mm -0.60±0.33 6.82 <0.001*
  ΔULH/mm 0.33±1.04 -1.18 0.261
  ΔU Verm H/mm 0.29±1.00 -1.09 0.296

Table 5

3D deviation of 15 3D facial landmarks before and after the treatment"

Items Value, ${\bar x}$±s t P Items Value, ${\bar x}$±s t P
R Chb Li
  X -0.34±0.8 -1.60 0.134   X 0.15±0.74 0.73 0.477
  Y 0.14±1.53 0.35 0.734   Y -0.16±1.99 -0.31 0.764
  Z 0.04±0.91 0.18 0.859   Z -4.94±1.95 -9.50 <0.001*
  D 1.81±0.67 10.11 <0.001*   D 5.36±1.92 10.45 <0.001*
L Chb Ls
  X 0.43±0.77 2.08 0.058   X -0.07±0.57 -0.43 0.677
  Y 0.08±1.12 0.28 0.786   Y -0.43±1.99 -0.80 0.437
  Z -0.68±0.83 -3.09 0.009*   Z -3.25±1.44 -8.44 <0.001*
  D 1.58±0.74 8.04 <0.001*   D 3.81±1.51 9.47 <0.001*
R Chl Me’
  X -0.11±1.64 -0.26 0.802   X 0.60±1.35 1.68 0.118
  Y -0.18±1.38 -0.48 0.639   Y 1.02±2.4 1.60 0.134
  Z -2.90±1.92 -5.65 <0.001*   Z -0.86±2.44 -1.32 0.210
  D 3.66±1.75 7.83 <0.001*   D 3.46±1.63 7.97 <0.001*
L Chl R Mid-Mb
  X 0.37±1.25 1.09 0.294   X -0.82±1.32 -2.31 0.038*
  Y 0.66±0.98 2.49 0.027*   Y 0.11±1.74 0.24 0.816
  Z -2.95±1.9 -5.79 <0.001*   Z -1.05±1.88 -2.10 0.056
  D 3.48±1.76 7.42 <0.001*   D 2.99±1.76 6.36 <0.001*
Gn’ L Mid-Mb
  X 0.17±0.84 0.78 0.449   X 0.87±1.59 2.05 0.061
  Y 1.16±2.73 1.59 0.135   Y -0.34±1.63 -0.79 0.444
  Z -0.04±2.55 -0.06 0.957   Z -1.16±0.83 -5.21 <0.001*
  D 3.32±2.07 6.00 <0.001*   D 2.42±1.14 7.91 <0.001*
R Go Pg’
  X -0.48±1.41 -1.27 0.227   X 0.08±0.8 0.37 0.717
  Y 0.39±0.96 1.50 0.157   Y 1.88±2.61 2.69 0.019*
  Z -1.35±1.31 -3.86 0.002*   Z -0.15±2.02 -0.28 0.783
  D 2.46±0.86 10.73 <0.001*   D 3.45±1.6 8.05 <0.001*
L Go Sl
  X 0.41±1.29 1.18 0.258   X 0.24±1.01 0.90 0.383
  Y -0.44±1.08 -1.52 0.152   Y -0.50±2.03 -0.92 0.372
  Z -0.40±1.53 -0.98 0.347   Z -3.10±3.5 -3.32 0.006*
  D 2.03±1.13 6.70 <0.001*   D 4.72±2.02 8.76 <0.001*
Sn
  X 0.20±0.47 1.58 0.139
  Y -0.33±0.7 -1.78 0.099
  Z -1.23±1.06 -4.34 0.001*
  D 1.64±0.85 7.25 <0.001*

Table 6

Linear-regression analysis and correlation analysis between three-dimensional (3D) facial measurements and 3D deviation of landmarks with cephalometric analysis measurements"

Dependent variable Pearson correlation coefficient Prediction equation R2 Standard error of estimate P
Constant term Independent variable
ΔLL H 0.613 -0.227 0.287×ΔL1-NB (mm) 0.376 0.52 0.010*
ΔL Verm H 0.643 -0.656 0.417×ΔL1-NB (mm) 0.413 0.70 0.007**
ΔL Verm H 0.494 -0.068 0.127×ΔL1-NB 0.244 0.80 0.036*
ΔL Verm H -0.550 -0.678 -0.092×ΔU1-L1 0.303 0.76 0.021*
ΔPhiltral L -0.642 0.827 -0.109×ΔU1-NA 0.412 0.70 0.007**
ΔPhiltral L 0.473 1.304 0.079×ΔU1-L1 0.224 0.81 0.044*
ΔPhiltral L -0.488 0.981 -0.096×ΔU1-SN 0.238 0.80 0.038*
ΔULH -0.553 0.548 -0.111×ΔU1-NA 0.306 0.90 0.020*
ΔULH 0.482 1.281 0.095×ΔU1-L1 0.232 0.95 0.040*
ΔU Verm H -0.474 0.185 -0.187×ΔU1-NA (mm) 0.224 0.91 0.044*
R Chl D -0.566 5.021 -0.891×Po-NB (mm) 0.320 1.50 0.017*
L Chl D -0.692 5.157 -1.095×Po-NB (mm) 0.479 1.32 0.003**
Gn’ D -0.469 9.324 -0.132×MP-SN 0.220 1.90 0.045*
Gn’ D -0.463 5.394 -0.283×ΔL1-NB 0.214 1.91 0.048*
Me’ D -0.723 10.258 -0.183×FH-MP 0.523 1.17 0.002**
Me’ D -0.707 10.578 -0.157×MP-SN 0.501 1.20 0.002**
Pg’ D -0.483 7.925 -0.121×FH-MP 0.234 1.46 0.040*
Pg’ D -0.509 8.492 -0.111×MP-SN 0.259 1.44 0.032*
Sn D 0.560 0.614 0.140×ΔL1-NB 0.313 0.73 0.019*
Sn D 0.532 0.718 0.146×ΔIMPA 0.283 0.75 0.025*
R Chl Z 0.560 -4.390 0.970×Po-NB(mm) 0.313 1.66 0.019*
L Chl Z 0.695 -4.772 1.191×Po-NB(mm) 0.482 1.43 0.003**
Li Z 0.509 -6.304 0.892×Po-NB(mm) 0.259 1.74 0.032*
Li Z -0.509 -3.938 -0.394×ΔU1-NA(mm) 0.259 1.74 0.031*
Sn Z -0.571 0.083 -0.179×ΔL1-NB 0.326 0.90 0.016*
Sn Z -0.553 -0.028 -0.189×ΔIMPA 0.306 0.92 0.020*
1 Reis PMP , Lima P , Garcia FCP , et al. Effect of maxillary median diastema on the esthetics of a smile[J]. Am J Orthod Dentofacial Orthop, 2020, 158 (4): E37- E42.
doi: 10.1016/j.ajodo.2020.07.028
2 施丹妮, 杨鑫, 吴建勇. 锥形束CT三维头影测量参考坐标系的研究进展[J]. 国际口腔医学杂志, 2021, 48 (4): 398- 404.
3 Ferrario VF , Sforza C , Schmitz JH , et al. A three-dimensional computerized mesh diagram analysis and its application in soft tissue facial morphometry[J]. Am J Orthod Dentofacial Orthop, 1998, 114 (4): 404- 413.
doi: 10.1016/S0889-5406(98)70185-4
4 Xiao Z , Liu Z , Gu Y . Integration of digital maxillary dental casts with 3D facial images in orthodontic patients: A three-dimensional validation study[J]. Angle Orthod, 2020, 90 (3): 397- 404.
doi: 10.2319/071619-473.1
5 Janson G , Mendes LM , Junqueira CHZ , et al. Soft-tissue changes in class Ⅱ malocclusion patients treated with extractions: A systematic review[J]. Eur J Orthod, 2016, 38 (6): 631- 637.
doi: 10.1093/ejo/cjv083
6 Konstantonis D , Vasileiou D , Papageorgiou SN , et al. Soft tissue changes following extraction vs. nonextraction orthodontic fixed appliance treatment: A systematic review and meta-analysis[J]. Eur J Oral Sci, 2018, 126 (3): 167- 179.
doi: 10.1111/eos.12409
7 谢天伊, 贾绮林. 成年女性正畸患者颊颞部软组织变化的三维测量研究[J]. 中华口腔正畸学杂志, 2020, 27 (4): 181- 186.
8 Lu WX , Zhang X , Mei L , et al. Orthodontic incisor retraction caused changes in the soft tissue chin area: A retrospective study[J]. BMC Oral Health, 2020, 20 (1): 108.
doi: 10.1186/s12903-020-01099-2
9 Tadic N , Woods MG . Incisal and soft tissue effects of maxillary premolar extraction in class Ⅱ treatment[J]. Angle Orthod, 2007, 77 (5): 808- 816.
doi: 10.2319/081706-336
10 Veltkamp T , Buschang PH , English JD , et al. Predicting lower lip and chin response to mandibular advancement and genioplasty[J]. Am J Orthod Dentofacial Orthop, 2002, 122 (6): 627- 634.
doi: 10.1067/mod.2002.128864
11 Choi SH , Lee H , Hwang JJ , et al. Differences in soft-tissue thickness changes after bimaxillary surgery between patients with vertically high angle and normal angle[J]. Am J Orthod Dentofacial Orthop, 2021, 159 (1): 30- 40.
doi: 10.1016/j.ajodo.2019.10.028
12 Holdaway RA . A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part Ⅰ[J]. Am J Orthod, 1983, 84 (1): 1- 28.
doi: 10.1016/0002-9416(83)90144-6
13 Hodges A , Rossouw PE , Campbell PM , et al. Prediction of lip response to four first premolar extractions in white female adolescents and adults[J]. Angle Orthod, 2009, 79 (3): 413- 421.
doi: 10.2319/050208-247.1
14 Upadhyay M , Yadav S , Nagaraj K , et al. Treatment effects of mini-implants for en-mass eretraction of anterior teeth in bialveolar dental protrusion patients: A randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2008, 134 (1): 18- 29.
doi: 10.1016/j.ajodo.2007.03.025
15 Sivakumar A , Valiathan A . Cephalometric assessment of dentofacial vertical changes in class Ⅰ subjects treated with and without extraction[J]. Am J Orthod Dentofacial Orthop, 2008, 133 (6): 869- 875.
doi: 10.1016/j.ajodo.2006.05.041
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!