,锥形束计算机体层摄影术,骨开裂,骨开窗," /> ,锥形束计算机体层摄影术,骨开裂,骨开窗,"/> Decompensation effectiveness and alveolar bone remodeling analysis of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion

Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (1): 62-69. doi: 10.19723/j.issn.1671-167X.2023.01.009

Previous Articles     Next Articles

Decompensation effectiveness and alveolar bone remodeling analysis of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion

Yu FU1,Xin-nong HU1,Sheng-jie CUI2,Jie SHI2,*()   

  1. 1. Fourth Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    2. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
  • Received:2022-10-10 Online:2023-02-18 Published:2023-01-31
  • Contact: Jie SHI E-mail:sjlily@yeah.net
  • Supported by:
    the National Natural Science Foundation of China(81901053);New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-20G02);New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-22A05)

Abstract:

Objective: To evaluate the decompensation effectiveness and alveolar bone remodeling of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion using lateral cephalogram and cone-beam computed tomography (CBCT). Methods: Thirty high-angle patients with skeletal class Ⅱ malocclusion who had received preoperative orthodontic treatment and orthognathic surgery in Peking University School and Hospital of Stomatology between Ja-nuary 2017 and August 2022 and had taken lateral cephalogram and CBCT before and after preoperative orthodontic treatment were selected. Items were measured with lateral cephalogram including: The lower central incisor (L1)-Frankfort plane angle (L1-FH), the L1-mandibular plane angle (L1-MP), the L1-nasion-supramental angle (L1-NB) and the vertical distance from the incisal edge of lower central incisor to NB line (L1-NB distance), etc. The incidence of dehiscence/fenestration and the length of dehiscence at labial side (d-La) and lingual side (d-Li) were measured using CBCT. Pearson correlation analysis was used to evaluate the correlation between the changes of d-Li of L1 and age, duration of preoperative orthodontic treatment and the cephalometric measurements before preoperative orthodontic treatment to screen out risk factors affecting the periodontal risk of preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusions. Results: After preoperative orthodontic treatment, L1-FH, L1-MP, L1-NB and L1-NB distances changed by 11.56°±5.62°, -11.13°±5.53°, -11.57°±5.43° and (-4.99±1.89) mm, respectively, and the differences were all statistically significant (P < 0.05). Among the 180 measured mandibular anterior teeth, 45 cases with labial dehiscence/fenestration before preoperative orthodontic treatment (T0) had no longer labial dehiscence/fenestration after preope-rative orthodontic treatment (T1); 142 cases without lingual dehiscence/fenestration at T0 had lingual dehiscence/fenestration at T1. After preoperative orthodontic treatment, the d-La of lower lateral incisors (L2), lower canines (L3) and lower anterior teeth (L1+L2+L3) decreased by (0.95±2.22) mm, (1.20±3.23) mm and (0.68±2.50) mm, respectively, and the differences were statistically significant (P < 0.05); the d-Li of L1, L2, L3 and L1+L2+L3 increased by (4.43±1.94) mm, (4.53±2.35) mm, (3.19±2.80) mm and (4.05±2.46) mm, respectively, and the differences were statistically significant (P < 0.05). The increase of d-Li of L1 was positively correlated with L1-FH (r=0.373, P=0.042). Conclusion: This study showed that high-angle patients with skeletal class Ⅱ ma-locclusion could achieve ideal decompensation effect of mandibular anterior teeth after preoperative orthodontic treatment with bilateral mandibular first premolars extracted, but the lingual periodontal risk of mandibular anterior teeth was increased. This risk could be correlated to L1-FH before preoperative orthodontic treatment, which should be paid more attention in the design of orthodontic-orthognathic surgical treatment.

Key words: Skeletal class Ⅱ malocclusion, Cone-beam computed tomography, Dehiscence, Fenestration

CLC Number: 

  • R783.5

Figure 1

Flow chart of the process of patients' selection and screening PKUSS, Peking University School and Hospital of Stomatology; CBCT, cone-beam computed tomography; ANB, subspinale-nasion-supramental angle; SN-MP, sella-nasion plane-mandibular plane angle."

Figure 2

Measurement plane, landmarks and variables A, horizontal plane; B, coronal plane; C, sagittal plane. M, alveolar crest at the mesial side; D, alveolar crest at the distal side; Mid, average of mesial and distal alveolar crest; d-La, the vertical distance from La (lowest alveolar crest at the labial side) to the mid-plane; d-Li, the vertical distance from Li (lowest alveolar crest at the lingual side) to the mid-plane; Fh, the highest point of the fenestration; Fl, the lowest point of the fenestration; f-La, the vertical distance from Fh to Fl."

Table 1

Basic information of subjects"

Items Female (n=22) Male (n=8) Total (n=30)
Age/years, $\bar x \pm s$ 28.45 ± 5.10 31.5 ± 6.53 29.27 ± 5.56
Duration of preoperative orthodontic treatment/months, $\bar x \pm s$ 20.68 ± 2.97 21.25 ± 3.37 20.83 ± 3.03

Table 2

Paired samples t test on changes of cephalometric variables"

Variables T0 T1 ΔT1-T0 t P
ANB/(°) 9.55 ± 2.02 9.35 ± 2.46 -0.20 ± 0.85 -1.313 0.199
SN-MP/(°) 46.50 ± 4.97 46.19 ± 5.08 -0.31 ± 0.86 -1.998 0.055
FH-MP/(°) 37.19 ± 4.97 36.76 ± 5.18 -0.43 ± 0.86 -2.735 0.011
L1-FH/(°) 42.19 ± 6.05 53.75 ± 5.80 11.56 ± 5.62 11.260 < 0.001
L1-MP/(°) 100.62 ± 5.48 89.49 ± 4.80 -11.13 ± 5.53 -11.011 < 0.001
L1-NB/(°) 40.13 ± 5.32 28.56 ± 4.59 -11.57 ± 5.43 -11.679 < 0.001
L1-NB distance/mm 12.35 ± 2.08 7.36 ± 2.22 -4.99 ± 1.89 -14.486 < 0.001

Table 3

Comparison on numbers of teeth with dehiscence/fenestration before and after preoperative orthodontic treatment"

Location Tooth position Posttreatment conditionPretreatment conditionP
T0 (-) T0 (+)
LabialL1 T1 (-) 35 7 >0.999
T1 (+) 8 10
L2 T1 (-) 20 24 < 0.001
T1 (+) 3 13
L3 T1 (-) 11 14 0.013
T1 (+) 3 32
L1+L2+L3 T1 (-) 66 45 < 0.001
T1 (+) 14 55
LingualL1 T1 (-) 2 0 < 0.001
T1 (+) 47 11
L2 T1 (-) 5 0 < 0.001
T1 (+) 50 5
L3 T1 (-) 13 0 < 0.001
T1 (+) 45 2
L1+L2+L3 T1 (-) 20 0 < 0.001
T1 (+) 142 18

Table 4

Alveolar bone remodeling grading of mandibular anterior teeth with dehiscence/fenestration at T0 after preoperative orthodontic treatment  n(%)"

Location Alveolar bone remodeling grading L1 L2 L3 L1+L2+L3
Labial 9 (53.0) 33 (89.2) 34 (73.9) 76 (76.0)
4 (23.5) 3 (8.1) 9 (19.6) 16 (16.0)
4 (23.5) 1 (2.7) 3 (6.5) 8 (8.0)
Lingual 0 0 0 0
0 0 1 (50.0) 1 (5.6)
11 (100.0) 5 (100.0) 1 (50.0) 17 (94.4)

Table 5

Paired t test/Wilcoxon signed rank test on changes of d-La and d-Li"

Tooth position Variables T0 T1 ΔT1-T0 ta/ Zb P
L1 d-La/mm 2.21 ± 1.83 2.33 ± 2.01 0.12 ± 1.63 -0.214 0.831b
d-Li/mm 2.61 ± 1.07 7.04 ± 2.12 4.43 ± 1.94 -6.681 < 0.001b
L2 d-La/mm 3.19 ± 2.92 2.24 ± 2.07 -0.95 ± 2.22 -3.459 0.001b
d-Li/mm 2.17 ± 0.60 6.70 ± 2.63 4.53 ± 2.35 14.906 < 0.001a
L3 d-La/mm 5.22 ± 3.77 4.03 ± 3.02 -1.20 ± 3.23 -3.693 < 0.001b
d-Li/mm 1.77 ± 0.82 4.95 ± 2.85 3.19 ± 2.80 -6.493 < 0.001b
L1+L2+L3 d-La/mm 3.54 ± 3.19 2.86 ± 2.53 -0.68 ± 2.50 -4.481 < 0.001b
d-Li/mm 2.18 ± 0.92 6.23 ± 2.70 4.05 ± 2.46 22.117 < 0.001a

Table 6

Correlation analysis of changes of d-Li of L1"

Variable r P
Age -0.137 0.470
Duration of preoperative orthodontic treatment 0.226 0.231
ANB -0.332 0.074
SN-MP -0.133 0.484
FH-MP -0.096 0.614
L1-FH 0.373 0.042
L1-MP -0.324 0.080
L1-NB -0.351 0.057
L1-NB distance -0.356 0.054
1 叶艳艳, 丁寅, 李娟, 等. 成人骨性Ⅱ类错患者不同垂直骨面型的切牙代偿情况研究[J]. 中国美容医学, 2013, 22 (1): 181- 184.
doi: 10.3969/j.issn.1008-6455.2013.01.074
2 Mcneil C , Mcintyre GT , Laverick S . How much incisor decompensation is achieved prior to orthognathic surgery?[J]. J Clin Exp Dent, 2014, 6 (2): e225- e229.
3 Yagci A , Veli I , Uysal T , et al. Dehiscence and fenestration in skeletal class Ⅰ, Ⅱ, and Ⅲ malocclusions assessed with cone-beam computed tomography[J]. Angle Orthod, 2012, 82 (1): 67- 74.
doi: 10.2319/040811-250.1
4 马静, 江久汇. 骨性Ⅱ类和Ⅲ类高角错患者下切牙区的牙槽骨形态分析[J]. 北京大学学报(医学版), 2018, 50 (1): 98- 103.
doi: 10.3969/j.issn.1671-167X.2018.01.017
5 Sun L , Mu C , Chen L , et al. Dehiscence and fenestration of class Ⅰ individuals with normality patterns in the anterior region: A CBCT study[J]. Clin Oral Investig, 2022, 26 (5): 4137- 4145.
doi: 10.1007/s00784-022-04384-2
6 徐筱, 徐莉, 江久汇, 等. 锥形束CT评判安氏Ⅲ类错上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018, 50 (1): 104- 109.
doi: 10.3969/j.issn.1671-167X.2018.01.018
7 张又文, 辛天艺, 焦剑, 等. 慢性牙周炎的减数正畸治疗[J]. 北京大学学报(医学版), 2018, 50 (2): 308- 313.
doi: 10.3969/j.issn.1671-167X.2018.02.017
8 温馥嘉, 陈贵, 刘怡. 基于锥形束CT的强支抗内收上前牙病例牙根及牙槽骨的形态学分[J]. 北京大学学报(医学版), 2016, 48 (4): 702- 708.
doi: 10.3969/j.issn.1671-167X.2016.04.027
9 Raposo R , Peleteiro B , Paco M , et al. Orthodontic camouflage versus orthodontic-orthognathic surgical treatment in class Ⅱ ma-locclusion: A systematic review and meta-analysis[J]. Int J Oral Maxillofac Surg, 2018, 47 (4): 445- 455.
doi: 10.1016/j.ijom.2017.09.003
10 Potts B , Shanker S , Fields HW , et al. Dental and skeletal changes associated with class Ⅱ surgical-orthodontic treatment[J]. Am J Orthod Dentofacial Orthop, 2009, 135 (5): 566.e1- 566.e7.
11 Quast A , Santander P , Leding J , et al. Orthodontic incisor decompensation in orthognathic therapy-success and efficiency in three dimensions[J]. Clin Oral Investig, 2021, 25 (6): 4001- 4010.
doi: 10.1007/s00784-020-03730-6
12 吴铭芳. 成人骨性Ⅱ类患者正颌与正畸治疗的比较[D]. 浙江: 浙江大学医学部, 2010.
13 季海宁. 成人骨性Ⅱ类错患者前牙区牙槽骨形态特征的CBCT研究[D]. 陕西: 第四军医大学, 2014.
14 Mcnamara JA Jr . Components of class Ⅱ malocclusion in children 8-10 years of age[J]. Angle Orthod, 1981, 51 (3): 177- 202.
15 陈浩天, 谷岩. 骨性Ⅰ、Ⅱ类不同垂直骨面型患者下颌前牙区皮质骨厚度与下切牙牙根位置的CBCT研究[J]. 中华口腔正畸学杂志, 2021, 28 (1): 44- 49.
16 Matsumoto K , Sherrill-Mix S , Boucher N , et al. A cone-beam computed tomographic evaluation of alveolar bone dimensional changes and the periodontal limits of mandibular incisor advancement in skeletal class Ⅱ patients[J]. Angle Orthod, 2020, 90 (3): 330- 338.
doi: 10.2319/080219-510.1
17 Jing WD , Jiao J , Xu L , et al. Periodontal soft-and hard-tissue changes after augmented corticotomy in Chinese adult patients with skeletal Angle class Ⅲ malocclusion: A non-randomized controlled trial[J]. J Periodontol, 2020, 91 (11): 1419- 1428.
doi: 10.1002/JPER.19-0522
18 Sun L , Yuan L , Wang B , et al. Changes of alveolar bone dehiscence and fenestration after augmented corticotomy-assisted orthodontic treatment: A CBCT evaluation[J]. Prog Orthod, 2019, 20 (1): 7.
19 Alhammadi HA , Wilcko MT , Ferguson DJ . Severe mandibular crowding treated with nonextraction periodontally accelerated osteogenic orthodontics[J]. Int J Periodontics Restorative Dent, 2019, 39 (5): e188- e194.
20 Yu H , Jiao F , Wang B , et al. Piezoelectric decortication applied in periodontally accelerated osteogenic orthodontics[J]. J Craniofac Surg, 2013, 24 (5): 1750- 1752.
21 Kurt Demirsoy K , Türker G , Amuk M , et al. How much should incisors be decompensated? periodontal bone defects during presurgical orthodontic treatment in class Ⅲ double-jaw orthognathic surgery patients[J]. J Stomatol Oral Maxillofac Surg, 2022, 123 (4): e133- e139.
22 Proffit WR , Phillips C , Douvartzidis N . A comparison of outcomes of orthodontic and surgical-orthodontic treatment of class Ⅱ malocclusion in adults[J]. Am J Orthod Dentofacial Orthop, 1992, 101 (6): 556- 565.
[1] Jin-hua ZHANG,Jie PAN,Zhi-peng SUN,Xiao WANG. Effect of various intracanal materials on the diagnostic accuracy of cone-beam computed tomography in vertical root fractures [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 333-338.
[2] Jia-xue YE,Yu-hong LIANG. A prevalence survey of cone-beam computed tomography use among endodontic practitioners [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 114-119.
[3] Meng-qiao PAN,Jian LIU,Li XU,Xiao XU,Jian-xia HOU,Xiao-tong LI,Xiao-xia WANG. A long-term evaluation of periodontal phenotypes before and after the periodontal-orthodontic-orthognathic combined treatment of lower anterior teeth in patients with skeletal Angle class Ⅲ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 52-61.
[4] Juan GAO,Hang-miao LV,Hui-min MA,Yi-jiao ZHAO,Xiao-tong LI. Evaluation of root resorption after surgical orthodontic treatment of skeletal Class Ⅲ malocclusion by three-dimensional volumetric measurement with cone-beam CT [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 719-726.
[5] LIU Wei-tao,WANG Yi-ran,WANG Xue-dong,ZHOU Yan-heng. A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 346-355.
[6] Gang YANG,Wen-jie HU,Jie CAO,Deng-gao LIU. Three-dimensional morphology analysis of the supraosseous gingival profile of periodontally healthy maxillary anterior teeth [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 990-994.
[7] MENG Yuan,ZHANG Li-qi,ZHAO Ya-ning,LIU Deng-gao,ZHANG Zu-yan,GAO Yan. Three-dimentional radiographic features of 67 maxillary radicular cysts [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 396-401.
[8] ZHOU Jing,LIU Yi. Cone-beam CT evaluation of temporomandibular joint in skeletal class Ⅱ female adolescents with different vertical patterns [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 109-119.
[9] GAO Lu,GU Yan. Chinese morphological stages of midpalatal suture and its correlation with Demirjian dental age [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 133-138.
[10] WANG Yi-ran, ZHOU Yan-heng, WANG Xue-dong, WEI Song, LIU Wei-tao. Evaluation of maxillary three-dimensional changes in maxillary protraction with alternating rapid palatal expansion and constriction based on the cone-beam computed tomography [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 685-693.
[11] JIA Peng-chen, YANG Gang, HU Wen-jie, ZHAO Yi-jiao, LIU Mu-qing. Preliminary study on the accuracy of infrabony root surface area of single-root teeth by periapical films [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 91-97.
[12] MA Jing, JIANG Jiu-hui. Morphological analysis of alveolar bone of anterior mandible in high-angle skeletal class Ⅱ and class Ⅲ malocclusions assessed with cone-beam computed tomography [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 98-103.
[13] XU Xiao, XU Li, JIANG Jiu-hui, WU Jia-qi, LI Xiao-tong, JING Wu-di. Accuracy analysis of alveolar dehiscence and fenestration of maxillary anterior teeth of Angle class Ⅲ by cone-beam CT [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 104-109.
[14] CAO Jie, MENG Huan-xin. Evaluation of using cone beam computed tomography as a regular test before and after periodontal regenerative surgery#br# [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 110-116.
[15] CHANG Da-tong, ZHOU Yan-heng, LIU Wei-tao. Evaluation of cone-beam computed tomography on upper airway changes after alternating rapid palatal expansion and constriction [J]. Journal of Peking University(Health Sciences), 2017, 49(4): 685-690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2001, 33(1): 50 -53 .
[2] . [J]. Journal of Peking University(Health Sciences), 2002, 34(2): 140 -143 .
[3] . [J]. Journal of Peking University(Health Sciences), 2010, 42(4): 476 -479 .
[4] . [J]. Journal of Peking University(Health Sciences), 2008, 40(2): 208 -210 .
[5] . [J]. Journal of Peking University(Health Sciences), 2008, 40(5): 459 -464 .
[6] . [J]. Journal of Peking University(Health Sciences), 2008, 40(5): 465 -470 .
[7] . [J]. Journal of Peking University(Health Sciences), 2003, 35(3): 274 -276 .
[8] . [J]. Journal of Peking University(Health Sciences), 2003, 35(6): 571 -575 .
[9] . [J]. Journal of Peking University(Health Sciences), 2004, 36(4): 414 -416 .
[10] . [J]. Journal of Peking University(Health Sciences), 2010, 42(4): 458 -460 .