Journal of Peking University(Health Sciences)

Previous Articles     Next Articles

Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing

SONG Yang, WANG Xiao-fei, WANG Yu-guang, SUN Yu-chun, LV Pei-jun△   

  1. (Center of Digital Dentistry,Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing 100081,China)
  • Online:2016-02-18 Published:2016-02-18
  • Contact: LV Pei-jun E-mail:kqlpj@bjmu.edu.cn
  • Supported by:

    Supported by Science and Technology Research Project of Chinese Ministry of Education,China(113002A)

Abstract:

Objective:To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.Methods:P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×106/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’ survival rate was detected by live-dead cell double fluorescence staining. Next, the printing body was osteogenically induced for 1 week to gain the experimental group; and the sodium alginate-gelatin mixture without cells was also printed to gain the control group. Both the experimental group and the control group were implanted into the back of the nude mice. After 6 weeks of implantation, the samples were collected, HE staining, Masson staining, immunohistochemical staining and Inveon Micro CT test were preformed to analyze their osteogenic capability. Results: The cells’ survival rate was 89%±2% after printing. Six weeks after implantation, the samples of the control group were mostly degraded, whose shape was irregular and gel-like; the samples of the experimental group kept their original size and their texture was tough. HE staining and Masson staining showed that the bone-like tissue and vessel ingrowth could be observed in the experimental group  6 weeks after implantation, immunohistochemical staining showed that the result of osteocalcin was positive, and Micro CT results showed that samples of the experimental group had a higher density and the new bone volume was 18%±1%.Conclusion:hASCs-biomaterial mixture 3D bio-printing body has capability of ectopic bone formation in nude mice, and it is feasible to apply cells-biomaterial mixture 3D bio-printing technology in the area of bone formation in vivo.

Key words: Osteogenesis, Printing, three-dimensional, Mesenchymal stromal cells, Adipose tissue, Biocompatible materials

CLC Number: 

  • R329.471
[1] SUI Hua-xin, LV Pei-jun, WANG Yong, FENG Yu-chi. Effects of low level laser irradiation on the osteogenic capacity of sodium alginate/gelatin/human adipose-derived stem cells 3D bio-printing construct [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 868-875.
[2] WANG Zi-cheng, CHENG Li, LV Tong-de, SU Li, LIN Jian, ZHOU Li-qun. Inflammatory priming adipose derived stem cells significantly inhibit the proliferation of peripheral blood mononuclear cells [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 590-594.
[3] ZHANG Su-jie, ZHAO Wei-hong, YU Lu-ping, YIN Hua-qi, ZHANG Xiao-wei, LI Qing, LIU Shi-jun, XU Tao. Minimal fat renalangiomyolipoma with multiple lymph nodes enlargement and postoperative refractory lymphatic fistula: a case report and literature review [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 717-721.
[4] LIU Jing-yin, CHEN Fei, GE Yan-jun, WEI Ling, PAN Shao-xia, FENG Hai-lan. Influence of implants prepared by selective laser melting on early bone healing [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 117-122.
[5] ZHANG Wei, PANG Chun-yan,WANG Yong-fu. Adipose tissue derived stem cells’ treatment effects in MRL/lpr mice and its effects on the imbalance of Th17/Treg cells [J]. Journal of Peking University(Health Sciences), 2017, 49(6): 974-978.
[6] SUI Hua-xin, LV Pei-jun, WANG Yu-guang, WANG Yong, SUN Yu-chun. Effect of lowlevel laser irradiation on proliferation and osteogenic differentiation of human adipose-derived stromal cells [J]. Journal of Peking University(Health Sciences), 2017, 49(2): 337-343.
[7] ZHAN Ya-lin, HU Wen-jie, XU Tao, ZHEN Min, LU Rui-fang. Histomorphometric evaluation of ridge preservation after molar tooth extraction [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 169-175.
[8] SONG Yang, WANG Xiao-fei, WANG Yu-guang, DONG Fan, LU Pei-jun. A preliminary study for the effect of nano hydroxyapatite on human adipose-derived mesenchymal stem cells mixture 3D bio-printing [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 894-899.
[9] LING Long, ZHAO Yu-ming, GE Li-hong. Impact of different degree pulpitis on cell proliferation and osteoblastic differentiation of dental pulp stem cell in Beagle immature premolars [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 878-883.
[10] CHEN Fei, PAN Shao-xia, FENG Hai-lan. Distribution and content of transforming growth factor-β1 and vascular endothelial growth factor in each layer of concentrated growth factors [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 860-865.
[11] ZHENG Yi-ming, DU Jing, LI Wen-zhu, WANG Zhao-xia, ZHANG Wei, XIAO Jiang-xi, YUAN Yun. Clinical application of MRI histogram in evaluation of muscle fatty infiltration [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 830-834.
[12] QIN Xue-yan, ZHAO Hua-xiang, ZHANG Qian, CHEN Feng, LIN Jiu-xiang. NELL-1: a novel highly efficient and specific growth factor [J]. Journal of Peking University(Health Sciences), 2016, 48(2): 380-383.
[13] GE Wen-shu, TANG Yi-man, ZHANG Xiao, LIU Yun-song, ZHOU Yong-sheng. Establishing a luciferase reporter system to evaluate osteogenic differentiation potential of human adipose-derived stem cells [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 170-174.
[14] ZHANG Xiao, LIU Yun-song, LV Long-wei, CHEN Tong, WU Gang, ZHOU Yong-sheng. Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 37-44.
[15] WANG Xiao-fei, LV Pei-jun, SONG Yang, WANG Yong, SUN Yu-chun. Short-term effect of CaCl2 on human adipose-derived mesenchymal stem cells proliferation and osteogenic differentiation [J]. Journal of Peking University(Health Sciences), 2015, 47(6): 971-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!