Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (3): 445-450. doi: 10.19723/j.issn.1671-167X.2019.03.011

Previous Articles     Next Articles

Role of erythroblast-like Ter cells in the pathogenesis of collagen-induced arthritis

Ping WANG1,Jing SONG1,Xiang-yu FANG1,Xin LI1,Xu LIU1,Yuan JIA1,Zhan-guo LI1,2,Fan-lei HU1△()   

  1. 1. Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China;
    2. State Key Laboratory of Natural and Biomime-tic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
  • Received:2019-03-18 Online:2019-06-18 Published:2019-06-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (81671604, 81302554, 31530020,81801617), the Beijing Nova Program (Z181100006218044) and the Fundamental Research Funds for the Central Universities: Peking University Clinical Medicine Plus X-Young Scholars Project (PKU2019LCXQ018)

RICH HTML

  

Abstract: Objective: To explore the role of Ter cells in the development of the collagen-induced arthritis (CIA), we detected their quantity changes in the spleen of different stages of CIA mice and analyzed the correlation between Ter cells and the joint scores, and we also analyzed the correlation between Ter cells and the frequencies of T and B cell subsets, so as to further understand the pathogenesis of rheumatoid arthritis.Methods: The six to eight weeks DBA/1 mice were used to prepare CIA model. After the second immunization, we began to evaluate the joint score. According to the time of CIA onset and the joint score, the CIA mice were divided into three stages: early, peak and late stages. According to the final joint score, the CIA mice at the peak stage were subdivided into the high score group (score>8) and the low score group (score≤8). The frequencies of Ter cells in the spleen of the na?ve mice and the CIA mice at various stages and the frequencies of T and B cell subsets in the spleen of the CIA mice at the peak stage were detected by flow cytometry, then we carried on the correlation analysis. Results: The frequencies of Ter cells in the spleen of the CIA mice was significantly higher than those of the na?ve mice (8.522%±2.645% vs. 1.937%±0.725%, P<0.01), the frequencies of Ter cells in the spleen of the high score group mice was significantly lower than those of the low score group (6.217%±0.841% vs. 10.827%±0.917%, P<0.01). The frequencies of Th1 cells in the spleen of the high score group mice was significantly higher than those of the low score group mice (1.337%±0.110% vs. 0.727%±0.223%, P<0.05). The frequencies of Th17 cells in the spleen of the high score group mice was higher than those of the low score group mice (0.750%±0.171% vs. 0.477%±0.051%, P=0.099). The frequencies of germinal center B cells in the spleen of the high score group mice was significantly higher than those of the low score group mice (1.243%±0.057% vs. 1.097%±0.015%, P<0.05). Correlation analysis results showed that the frequencies of Ter cells in the spleen of the CIA mice at the peak stage was strongly negatively correlated with the frequencies of CD4 + T, Th1, Th17, and germinal center B cells, and was strongly positively correlated with the frequencies of B10 cells, indicating that these cells might have a protective effect in CIA. Studies on dynamic changes showed that the frequencies of Ter cells in the spleen of the CIA mice at the late stage was significantly lower than those at the peak stage (0.917%±0.588% vs. 8.522%±2.645%, P<0.001), suggesting the protective effect of these cells in arthritis. Conclusion: Ter cells were significantly increased in the spleen of the CIA mice at peak stage, and were negatively correlated with joint scores and pathogenic immune cells, and positively correlated with protective immune cells. Ter cells were significantly decreased in the spleen of the CIA mice at the late stage. What we mentioned above suggests that Ter cells might be involved in the progression of rheumatoid arthritis as an immunomodulatory cell,but further in vivo and in vitro experiments are needed to verify its specific effects and mechanism.

Key words: Arthritis, experimental, Ter cells, Inflammation, Collagen

CLC Number: 

  • R593.22

Figure 1

Distribution of Ter cells in the spleen of different strains of mice A,gating strategies for Ter cells in the spleen of mice; B, the frequencies of Ter cells in C57BL/6, Balb/c and DBA/1 mice."

Figure 2

Ter cells were significantly increased in CIA mice (n=6) CIA, collagen-induced arthritis. Frequencys of Ter cells in the spleen of na?ve and CIA mice. Ter cells were increased markbly in CIA mice compared with na?ve mice."

Figure 3

Correlation analysis of Ter cell frequencies with joint score, T and B cell subsets A, The differences of the frequencies of Ter, Th1, Th17 and GC-B cells between the mice with high score and low score at the peak stage of CIA; B, Correlation analysis of Ter cell frequencies with T and B cell subsets."

Figure 4

Dynamic changes of Ter cells in different stages of CIA (n=6) Frequencys of Ter cells in the spleen of na?ve and CIA mice at different stages. Ter cells were decreased markbly in CIA mice at late stage compared with peak stage."

[1] Smolen JS, Aletaha D, Barton A , et al. Rheumatoid arthritis[J]. Nat Rev Dis Primers, 2018,4:18001.
doi: 10.1038/nrdp.2018.1
[2] McInnes IB, Schett G . The pathogenesis of rheumatoid arthritis[J]. N Engl J Med, 2011,365(23):2205-2219.
doi: 10.1056/NEJMra1004965
[3] Gol-Ara M, Jadidi-Niaragh F, Sadria R , et al. The role of diffe-rent subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis[J]. Arthritis, 2012,2012:805875.
[4] Kerkman PF , Rombouts Y, van der Voort EI, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2013,72(7):1259-1263.
doi: 10.1136/annrheumdis-2012-202893
[5] Xu LL, Liu X, Liu HJ , et al. Impairment of granzyme B-pro-ducing regulatory B cells correlates with exacerbated rheumatoid arthritis[J]. Front Immunol, 2017,8:768.
doi: 10.3389/fimmu.2017.00768
[6] Guo CQ, Hu FL, Yi HF , et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis[J]. Ann Rheum Dis, 2016,75(1):278-285.
doi: 10.1136/annrheumdis-2014-205508
[7] Han YM, Liu QY, Hou J , et al. Tumor-induced generation of splenic erythroblast-like Ter-cells promotes tumor progression[J]. Cell, 2018,173(3):634-648.
doi: 10.1016/j.cell.2018.02.061
[8] Bessis N, Decker P, Assier E , et al. Arthritis models: usefulness and interpretation[J]. Semin Immunopathol, 2017,39(4):469-486.
doi: 10.1007/s00281-017-0622-4
[9] Gizinski AM, Fox DA . T cell subsets and their role in the pathogenesis of rheumatic disease[J]. Curr Opin Rheumatol, 2014,26(2):204-210.
doi: 10.1097/BOR.0000000000000036
[10] Dahdah A, Habir K, Nandakumar KS , et al. Germinal center B cells are essential for collagen-induced arthritis[J]. Arthritis Rheumatol, 2018,70(2):193-203.
doi: 10.1002/art.40354
[11] Daien CI, Gailhac S, Mura T , et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and inversely correlated with disease activity[J]. Arthritis Rheumatol, 2014,66(8):2037-2046.
doi: 10.1002/art.v66.8
[12] Song ZQ, Yang F, Du H , et al. Role of artemin in non-small cell lung cancer[J]. Thorac Cancer, 2018,9(5):555-562.
doi: 10.1111/tca.2018.9.issue-5
[13] Wang J, Wang H, Cai J , et al. Artemin regulates CXCR4 expression to induce migration and invasion in pancreatic cancer cells through activation of NF-κB signaling[J]. Exp Cell Res, 2018,365(1):12-23.
doi: 10.1016/j.yexcr.2018.02.008
[14] Gao L, Bo HJ, Wang Y , et al. Neurotrophic factor artemin promotes invasiveness and neurotrophic function of pancreatic adenocarcinoma in vivo and in vitro[J]. Pancreas, 2015,44(1):134-143.
doi: 10.1097/MPA.0000000000000223
[1] Dongwu LIU, Jie CHEN, Mingli GAO, Jing YU. Rheumatoid arthritis with Castleman-like histopathology in lymph nodes: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 928-931.
[2] Zhengfang LI,Cainan LUO,Lijun WU,Xue WU,Xinyan MENG,Xiaomei CHEN,Yamei SHI,Yan ZHONG. Application value of anti-carbamylated protein antibody in the diagnosis of rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 729-734.
[3] Huina HUANG,Jing ZHAO,Xiangge ZHAO,Ziran BAI,Xia LI,Guan WANG. Regulatory effect of lactate on peripheral blood CD4+ T cell subsets in patients with rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 519-525.
[4] Xiaofei TANG,Yonghong LI,Qiuling DING,Zhuo SUN,Yang ZHANG,Yumei WANG,Meiyi TIAN,Jian LIU. Incidence and risk factors of deep vein thrombosis in patients with rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 279-283.
[5] Hongguang LI,Weihua HAN,Xun WU,Jiling FENG,Gang LI,Juanhong MENG. Preliminarily study of arthrocentesis combined with liquid phase concentrated growth factor injection in the treatment of unilateral temporomandibular joint osteoarthritis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 338-344.
[6] Chang SHU,Ye HAN,Yuzhe SUN,Zaimu YANG,Jianxia HOU. Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 45-50.
[7] Xue ZOU,Xiao-juan BAI,Li-qing ZHANG. Effectiveness of tofacitinib combined with iguratimod in the treatment of difficult-to-treat moderate-to-severe rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1013-1021.
[8] Deng-hui DUAN,Hom-Lay WANG,En-bo WANG. Role of collagen membrane in modified guided bone regeneration surgery using buccal punch flap approach: A retrospective and radiographical cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1097-1104.
[9] Chen-guang ZHANG,Xu-yan CHEN,Sheng WU,Li-li FENG,Yan WANG,Yu CHEN,Min DUAN,Ke WANG,Lin-lin SONG. Internal carotid artery pseudoaneurysm caused by parapharyngeal abscess: A case report [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1135-1138.
[10] Qi WU,Yue-ming CAI,Juan HE,Wen-di HUANG,Qing-wen WANG. Correlation between dyslipidemia and rheumatoid arthritis associated interstitial lung disease [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 982-992.
[11] Jing-feng ZHANG,Yin-ji JIN,Hui WEI,Zhong-qiang YAO,Jin-xia ZHAO. Correlation analysis between body mass index and clinical characteristics of rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 993-999.
[12] Lei WANG,Xiang-shu JIN,Hui-jun DONG,Guo-min OU,Xin-yuan LAI,Hui ZHUANG,Tong LI,Kuan-hui XIANG. Establishment of a reporter system for estimating activation of human hepatic stellate cells based on COL1A1 promoter and enhanced green fluorescent protein [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 876-885.
[13] Yin-ji JIN,Lin SUN,Jin-xia ZHAO,Xiang-yuan LIU. Significance of IgA isotype of anti-v-raf murine sarcoma viral oncogene homologue B1 antibody in rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 631-635.
[14] Wen-xin CAI,Shi-cheng LI,Yi-ming LIU,Ru-yu LIANG,Jing LI,Jian-ping GUO,Fan-lei HU,Xiao-lin SUN,Chun LI,Xu LIU,Hua YE,Li-zong DENG,Ru LI,Zhan-guo LI. A cross-sectional study on the clinical phenotypes of rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1068-1073.
[15] Fang CHENG,Shao-ying YANG,Xing-xing FANG,Xuan WANG,Fu-tao ZHAO. Role of the CCL28-CCR10 pathway in monocyte migration in rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1074-1078.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!