Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (2): 302-307. doi: 10.19723/j.issn.1671-167X.2021.02.012

Previous Articles     Next Articles

Clinical value of inflammatory biomarkers in predicting prognosis of patients with ureteral urothelial carcinoma

CHEN Huai-an,LIU Shuo(),LI Xiu-jun,WANG Zhe,ZHANG Chao,LI Feng-qi,MIAO Wen-long   

  1. Department of Urology, the First Affiliated Hospital, Hebei North Univercity, Zhangjiakou 075061, Hebei, China
  • Received:2019-03-25 Online:2021-04-18 Published:2021-04-21
  • Contact: Shuo LIU E-mail:liushuo1970@163.com
  • Supported by:
    Government-funded Project on Training Outstanding Clinical Medical Talents and Basic Research Projects in 2017(冀财社[2017]46号)

RICH HTML

  

Abstract:

Objective: To evaluate the clinical value of inflammation-related markers in predicting the prognosis of patients with ureteral urothelial carcinoma. Methods: 200 patients with ureteral urothelial carcinoma were randomly divided into two groups by split sample validation: modeling group and validation group. Paraffin embedded pathological specimens of the patients were reviewed. Immunohistochemical method was used to detect tumor-infiltrating neutrophil (TIN) (CD66b+), tumor-associated macrophage (TAM) (CD163+), lymphocyte (CD+, CD4+, CD8+) counts, peripheral blood neutrophil / lymphocyte ratio (NLR) and tumor tissue neutrophil/monocyte ratio (NMR). According to the results of pathological staging, the patients were divided into non-muscle-invasive and muscle-invasive ureteral urothelial carcinoma group. The resolution of the models was evaluated, and the prognostic nomogram models including only peripheral blood parameters and all parameters were established to compare the accuracy of the two models in predicting the prognosis of patients with urothelial carcinoma of the ureter. Results: The median follow-up time was 36 months, the progression-free survival was 40 months, and 42 cases (21.0%) showed tumor progression within 3 years. Tumor size, pathological stage and pathological grade were all single-factor variables predicting the first recurrence of ureteral urothelial carcinoma three years after operation. Tumor size, pathological stage, pathological grade, TIN, TAM, NLR and NMR were multi-factor variables predicting the first recurrence three years after operation. Among 104 cases of non-muscle-invasive ureteral urothelial carcinoma, 10 cases (9.6%) recurred for the first time 3 years after operation, 96 cases (33.3%) of muscle invasive ureteral urothelial carcinoma, and the diffe-rence between the two groups was statistically significant (χ2=15.53, P<0.05). The predictive nomogram model of progression free survival was established. The concordance index of progression free survi-val was 0.722 (95%CI: 0.70-0.78) in non-muscle-invasion group, and 0.725 (95%CI: 0.71-0.79) in muscle-invasion group, which was in good agreement with the observed 3-year survival rate. The results of discrimination test showed that the concordance index of the whole parameter prediction model of ureteral urothelial carcinoma was 0.726, which was higher than that of peripheral blood parameters (consistency index 0.672). The immune microenvironment of ureteral urothelial carcinoma improved the prediction accuracy of the model. Conclusion: The prognosis prediction model based on immune inflammation-related markers was established as a perfection and supplement for the existing pathological grading and staging system, providing a basis for accurate individualized treatment of patients with urete-ral urothelial carcinoma. The prognosis prediction model based on the relevant indicators of peripheral blood samples is established, which is easy to obtain specimens, and the detection method is simple and economical, which is more conducive to clinical application.

Key words: Ureteral neoplasms, Biomarkers, Linear models, Inflammation, Prognosis

CLC Number: 

  • R737.13

Table 1

General information, pathological characteristics, inflammatory immune related factors analysis of the model group (n=160) and the verification group (n=40)"

Items n Modeling group, n(%) Verification group, n(%) χ2/t P
Age, n(%) 1.21 0.27
30-50 years 93 78 (48.8) 15 (37.5)
51-76 years 107 82 (51.2) 25 (62.5)
Gender, n(%) 0.99 0.32
Male 129 100 (62.5) 29 (72.5)
Female 71 60 (37.5) 11 (27.5)
Tumor size, n(%) 0.03 0.86
<2 cm 90 60 (37.5) 30 (75.0)
2-4 cm 110 100 (62.5) 10 (25.0)
Pathological grading, n(%) 0 0.97
Low level 102 82 (51.2) 20 (50.0)
High level 98 78 (48.8) 20 (50.0)
Operative methods, n(%) 2.32 0.13
Retroperitoneal laparoscopy 106 80 (50.0) 26 (65.0)
Traditional open surgery 94 80 (50.0) 14 (35.0)
Pathological staging, n(%) 2.39 0.12
T3 40 36 (22.5) 4 (10.0)
T1-T2 160 124 (77.5) 36 (22.5)
TIN, $\bar{x} \pm s$ 200 56.7±10.4 54.8±10.8 1.03 0.31
TAM, $\bar{x} \pm s$ 200 57.9±11.3 58.9±11.5 0.50 0.62
NLR, $\bar{x} \pm s$ 200 3.3±0.6 3.4±0.7 0.91 0.36
NMR, $\bar{x} \pm s$ 200 2.6±0.7 2.5±0.6 0.83 0.41

Table 2

Univariate analysis of predicting the first recurrence of ureteral and urothelial carcinoma after operation"

Influence factor Sub-item RR Wald Z P 95%CI for Exp(B)
Tumor size <2 cm / 2-4 cm 0.653 18.590 <0.001 1.528-3.904
Pathological staging T1-T2/T3 1.609 13.598 <0.001 1.695-5.395
Pathological grading Low level / High level 2.295 16.281 <0.001 1.793-6.683

Table 3

Multivariate cox regression analysis for predicting recurrence of ureteral epithelial carcinoma"

Influence factor B S.E. Wald Z df P Exp(B) 95%CI for Exp(B)
Tumor size 0.877 0.547 17.624 1 <0.001 2.403 1.428-3.897
Pathological staging 1.849 1.307 12.635 1 0.003 3.936 1.695-5.276
Pathological grading 2.109 1.984 14.365 1 <0.001 4.309 1.789-6.593
TIN 1.674 1.714 21.573 1 <0.001 2.582 1.823-3.517
TAM 2.136 1.532 13.621 1 <0.001 3.134 1.634-4.186
NLR 1.727 1.635 18.379 1 <0.001 2.658 1.534-3.626
NMR 2.025 1.421 12.517 1 <0.001 3.012 1.525-4.072

Figure 1

Full-parameter model correction chart for predicting progression-free survival after myometrial invasive (A) and non-muscular invasive (B) surgery for ureteral epithelial carcinoma"

Figure 2

Calibration chart of nomogram model for predicting progression free survival rate with full parameters (A) and peripheral blood parameters (B)"

[1] 陆健伟, 吴佩琪. 非前哨淋巴结转移预测模型对中国乳腺癌患者的验证价值[J]. 分子影像学杂志, 2018,41(2):212-218.
[2] 苄晓洁, 沈益君, 朱耀, 等. 预测去势抵抗性前列腺癌患者总生存期Halabi风险列线图的验证研究[J]. 临床肿瘤学杂志, 2017,22(4):334-338.
[3] 张燕, 孙晓, 赵桐, 等. 术中快速预测乳腺癌非前哨淋巴结转移模型的建立与验证研究[J]. 中国癌症杂志, 2017,27(5):368-375.
[4] 王枭杰, 池畔, 林惠铭, 等. 建立影像学无远处转移结肠癌患者发生腹膜转移的列线图预测模型[J]. 中华胃肠外科杂志, 2017,20(12):1387-1392.
[5] 王枭杰, 池畔, 林惠铭, 等. 建立非转移性结直肠癌患者预后的列线图预测模型[J]. 中华胃肠外科杂志, 2017,20(6):654-659.
[6] 黄纲, 董忠信, 谢显彪, 等. 骨肉瘤预后个体化预测模型列线图的建立[J]. 中华骨科杂志, 2015,35(2):133-141.
[7] 赵芳, 徐斌, 蒋敬庭, 等. 未转移结直肠癌患者术后转移风险预测列线图的构建[J]. 临床检验杂志, 2018,36(5):388-391.
[8] 张怡, 钱萍. 转移性淋巴结比率在淋巴结转移胆囊癌患者中的预后意义及预后模型建立[J]. 浙江医学, 2018,40(20):2216-2219.
[9] 王葵, 邹奇飞, 李征, 等. 肝细胞癌个体化治疗的临床预测模型[J]. 临床肝胆病杂志, 2018,34(7):1382-1386.
[10] 孙奎霞, 闫存玲, 李志艳, 等. 基于前列腺健康指数建立的预测前列腺癌列线图模型的验证研究[J]. 中华检验医学杂志, 2018,41(7):536-540.
[11] 张彩祥, 丰琅, 田野. 上尿路尿路上皮癌患者输尿管全长切除术后再发膀胱癌的危险因素分析[J]. 中华泌尿外科杂志, 2016,37(7):488-492.
[12] 刘彬, 李文贤, 肖慧敏, 等. 上尿路尿路上皮癌根治术后尿路外复发的临床特点及危险因素分析[J]. 中华泌尿外科杂志, 2016,37(10):740-744.
[13] 邢云超, 熊耕砚, 方东, 等. 非肌层浸润性上尿路尿路上皮癌5年随访生存分析及其预后相关因素研究[J]. 中华泌尿外科杂志, 2016,37(3):190-194.
[14] 冯炳富, 罗勇, 魏德超, 等. 根治术联合化疗对高风险上尿路尿路上皮癌患者生存预后的影响[J]. 中华医学杂志, 2019,99(2):115-119.
[15] 关豹, 曹振朋, 彭鼎, 等. T2N0M0期上尿路尿路上皮癌患者预后相关因素分析:单中心235例患者回顾性研究[J]. 北京大学学报(医学版), 2017,49(4):603-607.
[16] 赵芳, 徐斌, 蒋敬庭, 等. 肾移植受者上尿路尿路上皮癌术后膀胱复发的预后因素[J]. 北京大学学报(医学版), 2015,47(4):605-610.
[17] 王跃, 贺慧颖. 上尿路尿路上皮癌368例根治标本的临床病理特点及预后分析[J]. 中华病理学杂志, 2016,45(10):681-686.
[18] Shankar A, Patil J, Sethi N, et al. Urinary dysfunction assessment in long-term survivors of carcinoma cervix using LENT SOMA scale: An Indian study addressing quality of life issues[J]. Asian Pac J Cancer Prev, 2019,20(2):383-389.
pmid: 30803196
[19] Yaegashi H, Izumi K, Kadomoto S, et al. High serum CA19-9 concentration indicates high chemosensitivity and better survival in advanced urothelial carcinoma[J]. Anticancer Res, 2019,39(1):375-380.
doi: 10.21873/anticanres.13122 pmid: 30591483
[20] 邢云超, 熊耕砚, 方东, 等. 上尿路尿路上皮癌术前预后相关因素分析及初步风险分层模型构建[J]. 北京大学学报(医学版), 2016,48(6):1032-1037.
[1] Junyong OU,Kunming NI,Lulin MA,Guoliang WANG,Ye YAN,Bin YANG,Gengwu LI,Haodong SONG,Min LU,Jianfei YE,Shudong ZHANG. Prognostic factors of patients with muscle invasive bladder cancer with intermediate-to-high risk prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 582-588.
[2] Shuai LIU,Lei LIU,Zhuo LIU,Fan ZHANG,Lulin MA,Xiaojun TIAN,Xiaofei HOU,Guoliang WANG,Lei ZHAO,Shudong ZHANG. Clinical treatment and prognosis of adrenocortical carcinoma with venous tumor thrombus [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 624-630.
[3] Le YU,Shaohui DENG,Fan ZHANG,Ye YAN,Jianfei YE,Shudong ZHANG. Clinicopathological characteristics and prognosis of multilocular cystic renal neoplasm of low malignant potential [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 661-666.
[4] Zezhen ZHOU,Shaohui DENG,Ye YAN,Fan ZHANG,Yichang HAO,Liyuan GE,Hongxian ZHANG,Guoliang WANG,Shudong ZHANG. Predicting the 3-year tumor-specific survival in patients with T3a non-metastatic renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 673-679.
[5] Yangyi FANG,Qiang LI,Zhigao HUANG,Min LU,Kai HONG,Shudong ZHANG. Well-differentiated papillary mesothelial tumour of the tunica vaginalis: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 741-744.
[6] Yuanyuan ZENG,Yun XIE,Daonan CHEN,Ruilan WANG. Related factors of euthyroid sick syndrome in patients with sepsis [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 526-532.
[7] Chang SHU,Ye HAN,Yuzhe SUN,Zaimu YANG,Jianxia HOU. Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 45-50.
[8] Jian-bin LI,Meng-na LYU,Qiang CHI,Yi-lin PENG,Peng-cheng LIU,Rui WU. Early prediction of severe COVID-19 in patients with Sjögren’s syndrome [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1007-1012.
[9] Chen-guang ZHANG,Xu-yan CHEN,Sheng WU,Li-li FENG,Yan WANG,Yu CHEN,Min DUAN,Ke WANG,Lin-lin SONG. Internal carotid artery pseudoaneurysm caused by parapharyngeal abscess: A case report [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1135-1138.
[10] Huan-rui LIU,Xiang PENG,Sen-lin LI,Xin GOU. Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 793-801.
[11] Zi-xuan XUE,Shi-ying TANG,Min QIU,Cheng LIU,Xiao-jun TIAN,Min LU,Jing-han DONG,Lu-lin MA,Shu-dong ZHANG. Clinicopathologic features and prognosis of young renal tumors with tumor thrombus [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 802-811.
[12] Zhong CAO,Hong-bing CEN,Jian-hong ZHAO,Jun MEI,Ling-zhi QIN,Wei LIAO,Qi-lin AO. Expression and significance of INSM1 and SOX11 in pancreatic neuroendocrine tumor and solid pseudopapillary neoplasm [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 575-581.
[13] Han LU,Jian-yun ZHANG,Rong YANG,Le XU,Qing-xiang LI,Yu-xing GUO,Chuan-bin GUO. Clinical factors affecting the prognosis of lower gingival squamous cell carcinoma [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 702-707.
[14] Yun-fei SHI,Hao-jie WANG,Wei-ping LIU,Lan MI,Meng-ping LONG,Yan-fei LIU,Yu-mei LAI,Li-xin ZHOU,Xin-ting DIAO,Xiang-hong LI. Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 521-529.
[15] Xiao-juan ZHU,Hong ZHANG,Shuang ZHANG,Dong LI,Xin LI,Ling XU,Ting LI. Clinicopathological features and prognosis of breast cancer with human epidermal growth factor receptor 2 low expression [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!