北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (1): 7-12. doi: 10.19723/j.issn.1671-167X.2022.01.002

• 获奖工作综述 • 上一篇    下一篇

口腔精准仿生修复技术的自主创新研发与转化

孙玉春(),郭雨晴,陈虎,邓珂慧,李伟伟   

  1. 北京大学口腔医学院·口腔医院口腔医学数字化研究中心,口腔修复教研室,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔材料重点实验室,北京 100081
  • 收稿日期:2021-11-22 出版日期:2022-02-18 发布日期:2022-02-21
  • 通讯作者: 孙玉春 E-mail:kqsyc@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81271181);国家自然科学基金(51475004);国家自然科学基金(52035001);国家重点研发计划项目(2019YFB1706900);首都科技领军人才培养工程(Z191100006119022)

Independent innovation research, development and transformation of precise bionic repair technology for oral prosthesis

SUN Yu-chun(),GUO Yu-qing,CHEN Hu,DENG Ke-hui,LI Wei-wei   

  1. Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
  • Received:2021-11-22 Online:2022-02-18 Published:2022-02-21
  • Contact: Yu-chun SUN E-mail:kqsyc@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81271181);National Natural Science Foundation of China(51475004);National Natural Science Foundation of China(52035001);National Key Research and Development Program of China(2019YFB1706900);Beijing Training Project for the Leading Talents in S & T(Z191100006119022)

关键词: 人工智能, 3D打印, 数字化技术, 口腔修复体, 仿生材料

Abstract:

According to the fourth national oral health epidemiological survey report (2018), billions of teeth are lost or missing in China, inducing chewing dysfunction, which is necessary to build physiological function using restorations. Digital technology improves the efficiency and accuracy of oral restoration, with the application of three-dimensional scans, computer-aided design (CAD), computer-aided manufacturing (CAM), bionic material design and so on. However, the basic research and product development of digital technology in China lack international competitiveness, with related products basically relying on imports, including denture 3D design software, 3D oral printers, and digitally processed materials. To overcome these difficulties, from 2001, Yuchun Sun’s team, from Peking University School and Hospital of Stomatology, developed a series of studies in artificial intelligence design and precision bionics manufacturing of complex oral prostheses. The research included artificial intelligence design technology for complex oral prostheses, 3D printing systems for oral medicine, biomimetic laminated zirconia materials and innovative application of digital prosthetics in clinical practice. The research from 2001 to 2007 was completed under the guidance of Prof. Peijun Lv and Prof. Yong Wang. Under the support of the National Natural Science Foundation of China, the National Science and Technology Support Program, National High-Tech R&D Program (863 Program) and Beijing Training Project for the Leading Talents in S & T, Yuchun Sun’s team published over 200 papers in the relevant field, authorized 49 national invention patents and 1 U.S. invention patent and issued 2 national standards. It also developed 8 kinds of core technology products in digital oral prostheses and 3 kinds of clinical diagnosis and treatment programs, which significantly improved the design efficiency of complex oral prostheses, the fabrication accuracy of metal prostheses and the bionic performance of ceramic materials. Compared with similar international technologies, the program doubled the efficiency of bionic design and manufacturing accuracy and reduced the difficulty of diagnosis and cost of treatment and application by 50%, with the key indicators of those products reaching the international leading level. This program not only helped to realize precision, intelligence and efficiency during prostheses but also provided functional and aesthetic matches for patients after prostheses. The program was rewarded with the First Technical Innovation Prize of the Beijing Science and Technology Awards (2020), Gold Medal of Medical Research Group in the First Medical Science and Technology Innovation Competition of National Health Commission of the People’s Republic of China (2020) and Best Creative Award in the First Translational Medical Innovation Competition of Capital (2017). This paper is a review of the current situation of artificial intelligence design and precision bionics manufacturing of complex oral prosthesis.

Key words: Artificial intelligence, 3D printing, digital prosthodontics, Dental prosthesis, Bionic material

中图分类号: 

  • R783.4
[1] 孙玉春, 李榕, 周永胜, 等. 三维打印在口腔修复领域中的应用[J]. 中华口腔医学杂志, 2017, 52(6):381-385.
[2] 吕培军, 孙玉春. 口腔修复计算机辅助设计/制作的过去、现在和将来[J]. 北京大学学报(医学版), 2010, 42(1):14-19.
[3] Sun YC, Lü PJ, Wang Y. Computer aided design for bridge framework based on reverse engineering technology[J]. Chin J Dent Res, 2007, 41(3):23-37.
[4] 孙玉春, 赵一姣, 王勇, 等. 上颌中切牙种植体全瓷基台的计算机辅助设计[J]. 中华口腔医学杂志, 2010, 45(10):631-634.
[5] 孙玉春, 孙儒, 邓珂慧, 等. 全口义齿数字化修复技术的研发和应用进展[J]. 中华口腔医学杂志, 2018, 53(1):60-65.
[6] 王子轩, 孙玉春, 周永胜. 数字化全口义齿的研究和应用进展[J]. 口腔颌面修复学杂志, 2017, 18(5):291-295.
[7] Sun YC, Lü PJ, Wang Y. Study on CAD&RP for removable complete denture[J]. Comput Methods Programs Biomed, 2009, 93(3):266-272.
doi: 10.1016/j.cmpb.2008.10.003
[8] 孙玉春, 吕培军, 王勇. 参数化定位全口义齿人工牙三维图形数据库的研究[J]. 口腔颌面修复学杂志, 2007, 8(4):257-260.
[9] 韩景芸, 孙玉春. 全口义齿数字化设计系统[J]. 北京工业大学学报, 2009, 35(5):17-21.
[10] 孙玉春, 吕培军, 王勇, 等. 计算机辅助设计与快速成形技术辅助制作全口义齿的探讨[J]. 中华口腔医学杂志, 2021, 42(6):324-329.
[11] Dai N, Yu XL, Fan QL, et al. Complete denture tooth arrangement technology driven by a reconfigurable rule[J/OL]. PLoS One, 2018, 13(6): e0198252 [2021-11-02]. https://doi.org/10.1371/journal.pone.0198252 .
[12] Dai N, Yu XL, Sun YC. Gingival morphology-controlled design of the complete denture baseplate[J/OL]. Int J Numer Method Biomed Eng, 2018, 34(2): e2911 [2021-11-02]. https://doi.org/10.1002/cnm.2911 .
[13] Cheng C, Cheng X, Dai N, et al. Prediction of facial deformation after complete denture prosjournal using BP neural network[J]. Comput Biol Med, 2015, 66(C):103-122.
doi: 10.1016/j.compbiomed.2015.08.018
[14] Xiong YX, Zhao YJ, Yang HF, et al. Comparison between interactive closest point and procrustes analysis for determining the median sagittal plane of three-dimensional facial data[J]. J Craniofac Surg, 2016, 27(2):441-444.
doi: 10.1097/SCS.0000000000002376
[15] Cheng C, Cheng XS, Dai N, et al. Deformation of facial model for complete denture prosjournal using ARAP group method and elastic properties[J]. Med Biol Eng Comput, 2017, 55(9):1635-1647.
doi: 10.1007/s11517-017-1626-x pmid: 28176265
[16] Yuan FS, Cheng C, Dai N, et al. Prediction of aesthetic reconstruction effects in edentulous patients[J/OL]. Sci Rep, 2017, 7: 18077 [2021-11-02]. https://doi.org/10.1038/s41598-017-17065-y .
[17] Yu XL, Cheng XS, Dai N, et al. Study on digital teeth selection and virtual teeth arrangement for complete denture[J]. Comput Methods Programs Biomed, 2018, 155(1):53-60.
doi: 10.1016/j.cmpb.2017.11.022
[18] Deng KH, Wang Y, Zhou YS, et al. Functionally suitable digital removable complete dentures: A dental technique[J]. J Prosthet Dent, 2020, 123(6):795-799.
doi: 10.1016/j.prosdent.2019.05.024
[19] Yuan FS, Lü PJ, Wang PF, et al. Custom fabrication of try-in wax complete denture[J]. Rapid Prototyp J, 2016, 22(3):539-543.
doi: 10.1108/RPJ-09-2014-0129
[20] 张长东, 戴宁, 廖文和, 等. 部分缺失牙齿咬合面自适应重建算法[J]. 中国生物医学工程学报, 2012, 23(2):203-210.
[21] Tian SK, Wang MH, Yuan FL, et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imaging, 2021, 40(9):2415-2427.
doi: 10.1109/TMI.2021.3077334
[22] Ye HQ, Wang ZX, Sun YC, et al. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects[J]. J Prosthet Dent, 2021, 126(2):257-261.
doi: 10.1016/j.prosdent.2020.05.026
[23] Li H, Lü PJ, Sun YC, et al. A quantitative study of 3D-scanning frequency and Δd of tracking points on the tooth surface[J/OL]. Sci Rep, 2015, 5: 14350 [2021-11-02]. https://doi.org/10.1038/srep14350 .
[24] Tian SK, Dai N, Li LL, et al. Three-dimensional mandibular motion trajectory-tracking system based on BP neural network[J]. Math Biosci Eng, 2020, 17(5):5709-5726.
doi: 10.3934/mbe.2020307 pmid: 33120574
[25] Li LL, Sun YC, Wang Y, et al. Accuracy of a novel virtual articulator for recording three-dimensional dentition[J]. Int J Prosthodont, 2020, 33(4):441-451.
doi: 10.11607/ijp.6480
[26] Yuan FS, Dai N, Tian SK, et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks[J/OL]. Int J Numer Method Biomed Eng, 2020, 36(5): e3321 [2021-11-02]. https://doi.org/10.1002/cnm.3321 .
[27] 北京大学口腔医学院, 南京航空航天大学, 先临三维科技股份有限公司, 等. 牙颌模型三维扫描仪技术要求:GB/T39111-2020[S]. 北京: 中国标准出版社, 2020: 1-16.
[28] 北京大学口腔医学院, 南京航空航天大学, 山东新华医疗器械股份有限公司. 口腔固定修复CAD软件技术要求:GB/T36108-2018[S]. 北京: 中国标准出版社, 2018: 1-12.
[29] 宋杨, 赵一姣, 孙玉春, 等. 国产计算机辅助设计软件设计精度与计算机辅助制作设备加工精度初探[J]. 中华口腔医学杂志, 2013, 48(9):550-553.
[30] Wang X, Lü PJ, Yang S, et al. Nano hydroxyapatite particles promote osteogenesis in three-dimensional bio-printing construct consisting of alginate/gelatin/hASCs[J]. RSC Adv, 2016, 6(8):6832-6842.
doi: 10.1039/C5RA21527G
[31] Wang SY, Li R, Xu YX, et al. Fabrication and application of a 3D-printed poly-epsilon-caprolactone cage scaffold for bone tissue engineering [J/OL]. Biomed Res Int, 2020, 2020: 2087475 [2021-11-02]. https://doi.org/10.1155/2020/2087475 .
[32] Chen H, Wang H, Lü PJ, et al. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture [J/OL]. Biomed Res Int, 2015, 2015: 453968 [2021-11-02]. https://doi.org/10.1155/2015/453968 .
[33] Sun Y, Ding Q, Tang L, et al. Accuracy of a chairside fused deposition modeling 3D-printed single-tooth surgical template for implant placement: An in vitro comparison with a light cured template[J]. J Craniomaxillofac Surg, 2019, 47(8):1216-1221.
doi: 10.1016/j.jcms.2019.03.019
[34] Chen H, Li H, Zhao YJ, et al. Adaptation of removable partial denture frameworks fabricated by selective laser melting[J]. J Prosthet Dent, 2019, 122(3):316-324.
doi: S0022-3913(18)31162-4 pmid: 30922559
[35] Yuan FS, Sun Y, Zhang L, et al. Accuracy of chair-side fused-deposition modelling for dental applications[J]. Rapid Prototyp J, 2019, 25(5):857-863.
doi: 10.1108/RPJ-04-2018-0082
[36] Ye HQ, Bai HF, Li ZY, et al. A metal template for preparing guiding planes for removable partial dentures[J]. J Prosthet Dent, 2021, 126(4):471-476.
doi: 10.1016/j.prosdent.2020.05.013
[37] Li LL, Chen H, Zhao YJ, et al. Design of occlusal wear facets of fixed dental prostheses driven by personalized mandibular movement[J/OL]. J Prosthet Dent, 2021(2021-02-04) [2021-11-02]. https://doi.org/10.1016/j.prosdent.2020.09.055 .
[38] Li ZY, Bai HF, Zhao YJ, et al. 3D evaluation of accuracy of tooth preparation for laminate veneers assisted by rigid constraint guides printed by selective laser melting[J]. Chin J Dent Res, 2020, 23(3):183-189.
[39] Ye HQ, Ning J, Li M, et al. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques[J]. Int J Prosthodont, 2017, 30(4):348-353.
doi: 10.11607/ijp.5270
[40] Yuan FS, Chen LT, Wang XF, et al. Comparative evaluation of the artefacts index of dental materials on two-dimensional cone-beam computed tomography[J/OL]. Sci Rep, 2016, 6: 26107[2021-11-02]. https://doi.org/10.1038/srep26107.
[41] Li R, Wang Y, Hu ML, et al. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: An in vitro study[J]. Int J Prosthodont, 2019, 32(5):439-443.
doi: 10.11607/ijp.6262
[42] Li R, Li WW, Wang Y, et al. Knife-edged crown fabricated by 3-dimensional gel deposition and soft milling[J/OL]. J Prosthet Dent, 2021(2021-05-26) [2021-11-02]. https://doi.org/10.1016/j.prosdent.2021.04.011 .
[43] Li R, Chen H, Wang Y, et al. Suitability of the triple-scan method with a dental laboratory scanner to assess the 3D adaptation of zirconia crowns[J]. J Prosthet Dent, 2021, 125(4):651-656.
doi: 10.1016/j.prosdent.2020.02.010
[44] Li R, Chen H, Wang Y, et al. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs[J/OL]. J Mech Behav Biomed Mater, 2021, 115(19): 104255 [2021-11-02]. https://doi.org/10.1016/j.jmbbm.2020.104255 .
[45] Yuan FS, Sun YC, Wang Y, et al. Accuracy evaluation of a new three-dimensional reproduction method of edentulous dental casts, and wax occlusion rims with jaw relation[J]. Int J Oral Sci, 2013, 5(3):155-161.
doi: 10.1038/ijos.2013.49
[46] Li WW, Xie QF, Wang Y, et al. A pilot study of digital recording of edentulous jaw relations using a handheld scanner and specially designed headgear[J/OL]. Sci Rep, 2018, 8: 8975 [2021-11-02]. https://doi.org/10.1038/s41598-018-27277-5 .
[47] Li WW, Li LL, Wang Y, et al. Accuracy of recording edentulous jaw relations by using an optical jaw tracking system An in vitro study [J/OL]. Int J Prosthodont, 2021 (2021-03-02) [2021-11-02]. https://doi.org/10.11607/ijp.7126 .
[48] 孙玉春, 王勇, 邓珂慧, 等. 功能易适数字化全口义齿的自主创新研发[J]. 北京大学学报(医学版), 2020, 52(2):390-394.
[49] Chen H, Xu Y, Chen LT, et al. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays [J/OL]. Sci Rep, 2016, 6 : 19207 [2021-11-02]. https://doi.org/10.1038/srep19207 .
[50] Sun YC, Hu C, Hong L, et al. Clinical evaluation of final impressions from three-dimensional printed custom trays [J/OL]. Sci Rep, 2017, 7: 14958 [2021-11-02]. https://doi.org/10.1038/s41598-017-14005-8 .
[51] 曹悦, 陈俊锴, 赵一姣, 等. 口内三维扫描技术临床应用精度的研究进展[J]. 中华口腔医学杂志, 2020, 55(3):201-205.
[52] 沈妍汝, 陈虎, 马珂楠, 等. 多色多硬度牙颌模型感光聚合物喷射一体化三维打印精度初探[J]. 中华口腔医学杂志, 2021, 56(7):652-658.
[53] Peng L, Zhao J, Wang Z, et al. Accuracy of root-end resection using a digital guide in endodontic surgery: An in vitro study[J]. J Dent Sci, 2021, 16(1):45-50.
doi: 10.1016/j.jds.2020.06.024
[54] Ye HQ, Li XX, Wang GB, et al. A novel computer-aided design/computer-assisted manufacture method for one-piece removable partial denture and evaluation of fit[J]. Int J Prosthodont, 2018, 31(2):149-151.
doi: 10.11607/ijp.5508
[55] 李忠义, 白鹤飞, 王勇, 等. 牙体预备定量引导技术的研究现状[J]. 中华口腔医学杂志, 2018, 53(2):137-140.
[56] Sun YC, Chen H, Vorobyev AY, et al. High-intensity femto-second laser ablation of human enamel and dentin[J]. J Med Imaging Health Inform, 2014, 4(3):422-426.
doi: 10.1166/jmihi.2014.1280
[1] 马珂楠,陈虎,沈妍汝,周永胜,王勇,孙玉春. 选择性激光熔化打印可摘局部义齿圆环形卡环固位力的有限元分析[J]. 北京大学学报(医学版), 2022, 54(1): 105-112.
[2] 王顺吉,章文博,于尧,谢晓艳,杨宏宇,彭歆. 术前虚拟设计在股前外侧皮瓣修复口腔颌面部缺损中的应用[J]. 北京大学学报(医学版), 2020, 52(1): 119-123.
[3] 张达,王林川,周彦恒,刘晓默,李晶. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017, 49(4): 704-708.
[4] 王圣林,杨钟玮,闫明,刘忠军. 术中CT引导下寰枢椎复位、固定[J]. 北京大学学报(医学版), 2017, 49(3): 512-517.
[5] 郭福新,姜玉良,吉喆,彭冉,孙海涛,王俊杰. 3D打印非共面模板辅助CT引导125Ⅰ粒子植入治疗锁骨上复发转移癌的剂量学研究[J]. 北京大学学报(医学版), 2017, 49(3): 506-511.
[6] 王磊, 白薇, 冯海兰, 贾欣茹. 自组装寡肽在体外模拟牙釉柱晶体形成[J]. 北京大学学报(医学版), 2007, 39(1): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[2] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[3] Jian-wei GU, Emily YOUNG, Zhi-jun PAN, Kevan B. TUCKER, Megan SHPARAGO, Min HUANG, Amelia Purser BAILEY. SD大鼠长期高盐饮食可导致其高血压并改变肾细胞因子基因表达谱[J]. 北京大学学报(医学版), 2009, 41(5): 505 -515 .
[4] 李伟军, 邢晓芳, 曲立科, 孟麟, 寿成超. PRL-3基因C104S位点突变体和CAAX缺失体的构建及表达[J]. 北京大学学报(医学版), 2009, 41(5): 516 -520 .
[5] 钱英, 王玉凤. 共患病对注意缺陷多动障碍执行功能的影响[J]. 北京大学学报(医学版), 2007, 39(3): 329 -332 .
[6] . 消息[J]. 北京大学学报(医学版), 2007, 39(3): 12 .
[7] 李宏, 李淳德. 儿童颈脊髓锐器伤一例[J]. 北京大学学报(医学版), 2007, 39(4): 385 -387 .
[8] 朱炳梅, 李婷, 周玉玲, 宋泉声, 王露. 新的潜在的雄激素受体协同抑制因子CMTM1-v17[J]. 北京大学学报(医学版), 2007, 39(4): 388 -393 .
[9] 谢华顺, 宋为明, 上官棣华, 李学佩, 王伟, 王丽, 朱丽. 在体微透析研究条件性噪声对下丘听觉通路谷氨酸水平的影响[J]. 北京大学学报(医学版), 2007, 39(4): 409 -411 .
[10] 袁葛, 赵继宗, 王硕, 许俊, 辛宇. 术中血管造影在脑动静脉畸形手术中的应用[J]. 北京大学学报(医学版), 2007, 39(4): 412 -415 .